Jeff Parker Operations Manager Marathon Oil Company 3172 Higway 22 North Dickinson, ND 58601 Telephone (701)456-7500 irparker@marathonoil.com November 1, 2018 Via Certified Mail: 7015 0640 0006 6407 1036 U. S. Environmental Protection Agency Director, Air and Toxics Technical Enforcement Program Office of Enforcement, Compliance, and Environmental Justice Mail Code 8ENF-AT 1595 Wynkoop Street Denver, Colorado 80202-1129 RECEIVED NOV 6 - 2018 Office of Enforcement, Compliance and Environmental Justice Dear Administrator: In accordance with the requirements of Title 40 Code of Federal Regulations (CFR) Subpart OOOOa, Standards of Performance for Crude Oil and Natural Gas Facilities for which construction, modification, or reconstruction commenced after September 18, 2015, Marathon Oil Company (Marathon) hereby submits its annual report for the August 2, 2017 through August 1, 2018 reporting period as required by 40 CFR 49.4168(b). The report information is listed by regulatory citation as noted below: 40 CFR 5420a(b)(1)(i) The company name, facility site name associated with the affected facility, US Well ID or US Well ID associated with the affected facility, if applicable, and address of the affected facility. If an address is not available for the site, include a description of the site location and provide the latitude and longitude coordinates of the site in decimal degrees to an accuracy and precision of five (5) decimals of a degree using the North American Datum of 1983. The company name is Marathon Oil Company, and the facility site name, well API number, and coordinates of each site are included in **Appendix A**. 40 CFR 5420a(b)(1)(ii) An identification of each affected facility being included in the annual report. Appendix B contains a list of affected facilities by facility site name. 40 CFR 5420a(b)(1)(iii) Beginning and ending dates of the reporting period. The reporting period is August 2, 2017 through August 1, 2018. 40 CFR 5420a(b)(1)(iv) A certification by a certifying official of truth, accuracy, and completeness. This certification shall state that, based on information and belief formed after reasonable inquiry, the statements and information in the document are true, accurate, and complete. I certify based on information and belief formed after reasonable inquiry, that the statements and information in this document are true, accurate, and complete. 40 CFR 5420a(b)(2)(i) For each well affected facility, records of each well completion operation as specified in paragraphs (c)(1)(i) through (iv) and (vi) of §60.5420a, if applicable, for each well affected facility conducted during the reporting period. In lieu of submitting the records specified in paragraph (c)(1)(i) through (iv) of §60.5420a, the owner or operator may submit a list of the well completions with hydraulic fracturing completed during the reporting period and the records required by paragraph (c)(1)(v) of §60.5420a for each well completion. - 1) Records identifying each well completion operation for each well affected facility; - Records of deviations in cases where well completion operations with hydraulic fracturing were not performed in compliance with the requirements specified in §60.5375a. - b) Records required in §60.5375a(b) or (f)(3) for each well completion operation conducted for each well affected facility that occurred during the reporting period. You must maintain the records specified in paragraphs (c)(1)(iii)(A) through (C) of this section. - i) (A) For each well affected facility required to comply with the requirements of §60.5375a(a), you must record: The location of the well; the United States Well Number; the date and time of the onset of flowback following hydraulic fracturing or re-fracturing; the date and time of each attempt to direct flowback to a separator as required in §60.5375a(a)(1)(ii); the date and time of each occurrence of returning to the initial flowback stage under §60.5375a(a)(1)(i); and the date and time that the well was shut in and the flowback equipment was permanently disconnected, or the startup of production; the duration of flowback; duration of recovery and disposition of recovery (i.e., routed to the gas flow line or collection system, re-injected into the well or another well, used as an onsite fuel source, or used for another useful purpose that a purchased fuel or raw material would serve); duration of combustion; duration of venting; and specific reasons for venting in lieu of capture or combustion. The duration must be specified in hours. In addition, for wells where it is technically infeasible to route the recovered gas to any of the four options specified in §60.5375a(a)(1)(ii), you must record the reasons for the claim of technical infeasibility with respect to all four options provided in that subparagraph, including but not limited to; name and location of the nearest gathering line and technical considerations preventing routing to this line; capture, reinjection, and reuse technologies considered and aspects of gas or equipment preventing use of recovered gas as a fuel onsite; and technical considerations preventing use of recovered gas for other useful purpose that that a purchased fuel or raw material would serve. - c) For each well affected facility required to comply with the requirements of §60.5375a(f), you must maintain the records specified in paragraph (c)(1)(iii)(A) of §60.5420a except that you do not have to record the duration of recovery to the flow line. - d) For each well affected facility for which you make a claim that it meets the criteria of §60.5375a(a)(1)(iii)(A), you must maintain the following: - i) Records specified in paragraph (c)(1)(iii)(A) of this section except that you do not have to record: The date and time of each attempt to direct flowback to a separator; the date and time of each occurrence of returning to the initial flowback stage; duration of recovery and disposition of recovery (i.e. routed to the gas flow line or collection system, re-injected into the well or another well, used as an onsite fuel source, or used for another useful purpose that a purchased fuel or raw material would serve. - ii) If applicable, records that the conditions of §60.5375a(1)(iii)(A) are no longer met and that the well completion operation has been stopped and a separator installed. The records shall include the date and time the well completion operation was stopped and the date and time the separator was installed. - iii) A record of the claim signed by the certifying official that no liquids collection is at the well site. The claim must include a certification by a certifying official of truth, accuracy and completeness. This certification shall state that, based on information and belief formed after reasonable inquiry, the statements and information in the document are true, accurate, and complete. - iv) For each well affected facility for which you claim an exception under §60.5375a(a)(3), you must record: The location of the well; the United States Well Number; the specific exception claimed; the starting date and ending date for the period the well operated under the exception; and an explanation of why the well meets the claimed exception. Well completions with hydraulic fracturing which occurred during the reporting period are included in **Appendix C**. Marathon does not claim any exceptions under §60.5375a(a)(3). 40 CFR 5420a(b)(2)(ii) For each well affected facility, records of deviations specified in paragraph (c)(1)(ii) of §60.5420a that occurred during the reporting period. There were no deviations associated with well completion operations which occurred during the reporting period. 40 CFR 5420a(b)(2)(iii) For each well affected facility, records specified in paragraph (c)(1)(vii) of §60.5420a, if applicable, that support a determination under 60.5432a that the well affected facility is a low pressure well as defined in 60.5430a. There were no low pressure well completion operations which occurred during the reporting period. <u>40 CFR 5420a(b)(3)(i)</u> For each centrifugal compressor affected facility, an identification of each centrifugal compressor using a wet seal system constructed, modified or reconstructed during the reporting period. There were no centrifugal compressor affected facilities using a wet seal system constructed, modified, or reconstructed by Marathon during the reporting period. 40 CFR 5420a(b)(3)(ii) For each centrifugal compressor affected facility, records of deviations specified in paragraph (c)(2) of §60.5420a that occurred during the reporting period. There were no deviations associated with centrifugal compressor affected facilities during the reporting period. 40 CFR 5420a(b)(3)(iii) For each centrifugal compressor affected facility, if required to comply with §60.5380a(a)(2), the records specified in paragraphs (c)(6) through (11) of §60.5420a. Marathon did not operate, construct, modify, or reconstruct any centrifugal compressor affected facility during the reporting period. Therefore there are no records as specified in paragraphs (c) (6) through (11) of §60.5420a. 40 CFR 5420a(b)(3)(iv) If complying with §60.5380a(a)(1) with a control device tested under §60.5413a(d) which meets the criteria in §60.5413a(d)(11) and §60.5413a(e), records specified in paragraph (c)(2)(i) through (c)(2)(vii) of §60.5420a for each centrifugal compressor using a wet seal system constructed, modified or reconstructed during the reporting period. Marathon did not operate any centrifugal compressors with wet seal systems during the reporting period. <u>40 CFR 5420a(b)(4)(i)</u> For each reciprocating compressor affected facility, the cumulative number of hours of operation or the number of months since initial startup or since the previous reciprocating compressor rod packing replacement, whichever is later. Alternatively, a statement that emissions from the rod packing are being routed to a process through a closed vent
system under negative pressure. Marathon did not operate construct, modify, or reconstruct any reciprocating compressor affected facilities during the reporting period. 40 CFR 5420a(b)(4)(ii) For each reciprocating compressor affected facility, records of deviations specified in paragraph (c)(3)(iii) of §60.5420a that occurred during the reporting period. Marathon did not construct, modify, or reconstruct any reciprocating compressor affected facilities during the reporting period. 40 CFR 5420a(b)(5)(i) For each pneumatic controller affected facility, an identification of each pneumatic controller constructed, modified or reconstructed during the reporting period, including the identification information specified in §60.5390a(b)(2) or (c)(2). Marathon did not construct, modify, or reconstruct any pneumatic controller affected facilities during the reporting period 40 CFR 5420a(b)(5)(ii) For each pneumatic controller affected facility, if applicable, documentation that the use of pneumatic controller affected facilities with a natural gas bleed rate greater than 6 standard cubic feet per hour are required and the reasons why. Marathon did not construct, modify, or reconstruct any pneumatic controller affected facilities during the reporting period. 40 CFR 5420a(b)(5)(iii) For each pneumatic controller affected facility, records of deviations specified in paragraph (c)(4)(v) of §60.5420a that occurred during the reporting period. Marathon did not construct, modify, or reconstruct any pneumatic controller affected facilities during the reporting period. <u>40 CFR 5420a(b)(6)(i)</u> For each storage vessel affected facility, an identification, including the location, of each storage vessel affected facility for which construction, modification or reconstruction commenced during the reporting period. The location of the storage vessel shall be in latitude and longitude coordinates in decimal degrees to an accuracy and precision of five (5) decimals of a degree using the North American Datum of 1983. Appendix D contains a list of storage vessel affected facilities. 40 CFR 5420a(b)(6)(ii) For each storage vessel affected facility, documentation of the VOC emission rate determination according to §60.5365a(e) for each storage vessel that became an affected facility during the reporting period or is returned to service during the reporting period. Storage vessel affected facility VOC emission rate determinations are included in Appendix E. 40 CFR 5420a(b)(6)(iii) For each storage vessel affected facility, records of deviations specified in paragraph (c)(5)(iii) of §60.5420a that occurred during the reporting period. Deviations associated with storage tank requirements are identified in **Appendix F** by facility site name. 40 CFR 5420a(b)(6)(iv) For each storage vessel affected facility, a statement that you have met the requirements specified in §60.5410a(h)(2) and (3). VOC emission rates were reduced in accordance with the requirements of §60.5365a(e)(1) through (e)(4) including the cover requirements specified in §60.5411a(b) and the closed vent system requirements specified in §60.5411a(c). A control device was used to reduce emissions, and initial compliance was determined by meeting the requirements in §60.5395a(e), including the control device requirements in §60.5412a(d)(3). The control device requirements in §60.5412a(c) did not apply since Marathon does not operate any carbon absorption systems. 40 CFR 5420a(b)(6)(v) For each storage vessel affected facility, you must identify each storage vessel affected facility that is removed from service during the reporting period as specified in §60.5395a(c)(1)(ii), including the date the storage vessel affected facility was removed from service. No storage vessel affected facilities were removed from service during the reporting period. 40 CFR 5420a(b)(6)(vi) You must identify each storage vessel affected facility returned to service during the reporting period as specified in §60.5395a(c)(3), including the date the storage vessel affected facility was returned to service. No storage vessel affected facility was returned to service during the reporting period. 40 CFR 5420a(b)(6)(vii) For each storage vessel affected facility, if complying with §60.5395a(a)(2) with a control device tested under §60.5413a(d) which meets the criteria in §60.5413a(d)(11) and §60.5413a(e), records specified in paragraphs (c)(5)(vi)(A) through (F) of §60.5420a for each storage vessel constructed, modified, reconstructed or returned to service during the reporting period. Marathon did not operate any combustion control devices with a manufacturer's performance test during the reporting period. 40 CFR 5420a(b)(7) For the collection of fugitive emissions components at each well site and the collection of fugitive emissions components at each compressor station within the company-defined area, the records of each monitoring survey including the information specified in paragraphs (b)(7)(i) through (xii) of §60.5420a . For the collection of fugitive emissions components at a compressor station, if a monitoring survey is waived under §60.5397a(g)(5), you must include in your annual report the fact that a monitoring survey was waived and the calendar months that make up the quarterly monitoring period for which the monitoring survey was waived. - 1) Date of the survey. - 2) Beginning and end time of the survey. - Name of operator(s) performing survey. If the survey is performed by optical gas imaging, you must note the training and experience of the operator. - 4) Ambient temperature, sky conditions, and maximum wind speed at the time of the survey. - 5) Monitoring instrument used. - 6) Any deviations from the monitoring plan or a statement that there were no deviations from the monitoring plan. - 7) Number and type of components for which fugitive emissions were detected. - 8) Number and type of fugitive emissions components that were not repaired as required in §60.5397a(h). - 9) Number and type of difficult-to-monitor and unsafe-to-monitor fugitive emission components monitored. - 10) The date of successful repair of the fugitive emissions component. - 11) Number and type of fugitive emission components placed on delay of repair and explanation for each delay of repair. - 12) Type of instrument used to resurvey a repaired fugitive emissions component that could not be repaired during the initial fugitive emissions finding. The required records are located in Appendix G. 40 CFR 5420a(b)(8)(i) For each pneumatic pump that is constructed, modified or reconstructed during the reporting period, you must provide certification that the pneumatic pump meets one of the conditions described in paragraphs (b)(8)(i)(A), (B) or (C) of this section. - 1) No control device or process is available on site. - 2) A control device or process is available on site and the owner or operator has determined in accordance with §60.5393a(b)(5) that it is technically infeasible to capture and route the emissions to the control device or process. - 3) Emissions from the pneumatic pump are routed to a control device or process. If the control device is designed to achieve less than 95 percent emissions reduction, specify the percent emissions reductions the control device is designed to achieve. No pneumatic pumps were constructed, modified, or reconstructed at the facilities listed in **Appendix A** during the reporting period. 40 CFR 5420a(b)(8)(ii) For any pneumatic pump affected facility which has been previously reported as required under paragraph (b)(8)(i) of §60.5420a and for which a change in the reported condition has occurred during the reporting period, provide the identification of the pneumatic pump affected facility and the date it was previously reported and a certification that the pneumatic pump meets one of the conditions described in paragraphs (b)(8)(ii)(A), (B) or (C) or (D) of this section. - 1) A control device has been added to the location and the pneumatic pump now reports according to paragraph (b)(8)(i)(C) of this section. - 2) A control device has been added to the location and the pneumatic pump affected facility now reports according to paragraph (b)(8)(i)(B) of this section. - 3) A control device or process has been removed from the location or otherwise is no longer available and the pneumatic pump affected facility now report according to paragraph (b)(8)(i)(A) of this section. - 4) A control device or process has been removed from the location or is otherwise no longer available and the owner or operator has determined in accordance with §60.5393a(b)(5) through an engineering evaluation that it is technically infeasible to capture and route the emissions to another control device or process. No pneumatic pumps were constructed, modified, or reconstructed at the facilities listed in **Appendix A** during the reporting period. 40 CFR 5420a(b)(8)(iii) For any pneumatic pump affected facility, records of deviations specified in paragraph (c)(16)(ii) of §5420a that occurred during the reporting period. No pneumatic pumps were constructed during the reporting period. 40 CFR 5420a(b)(9) Within 60 days after the date of completing each performance test (see §60.8) required by 40 CFR 60.5420a, except testing conducted by the manufacturer as specified in §60.5413a(d), you must submit the results of the performance test following the procedure specified in either paragraph (b)(9)(i) or (ii) of §60.5420a. - 1) For data collected using test methods supported by the EPA's Electronic Reporting Tool (ERT) as listed on the EPA's ERT Web site (https://www3.epa.gov/ttn/chief/ert/ert_info.html) at the time of the test, you must submit the results of the performance test to the EPA via the Compliance and Emissions Data Reporting Interface (CEDRI). (CEDRI can be accessed through the EPA's Central Data Exchange (CDX) (https://cdx.epa.gov/).) Performance test data must be submitted in a file format generated
through the use of the EPA's ERT or an alternate electronic file format consistent with the extensible markup language (XML) schema listed on the EPA's ERT Web site. If you claim that some of the performance test information being submitted is confidential business information (CBI), you must submit a complete file generated through the use of the EPA's ERT or an alternate electronic file consistent with the XML schema listed on the EPA's ERT Web site, including information claimed to be CBI, on a compact disc, flash drive, or other commonly used electronic storage media to the EPA. The electronic media must be clearly marked as CBI and mailed to U.S. EPA/OAQPS/CORE CBI Office, Attention: Group Leader, Measurement Policy Group, MD C404-02, 4930 Old Page Rd., Durham, NC 27703. The same ERT or alternate file with the CBI omitted must be submitted to the EPA via the EPA's CDX as described earlier in this paragraph. - 2) For data collected using test methods that are not supported by the EPA's ERT as listed on the EPA's ERT Web site at the time of the test, you must submit the results of the performance test to the Administrator at the appropriate address listed in §60.4. No performance tests were conducted by Marathon during the reporting period. 40 CFR 5420a(b)(10) For combustion control devices tested by the manufacturer in accordance with §60.5413a(d), an electronic copy of the performance test results required by §60.5413a(d) shall be submitted via email to Oil_and_Gas_PT@EPA.GOV unless the test results for that model of combustion control device are posted at the following Web site: epa.gov/airquality/oilandgas/. No combustion control devices were installed by Marathon during the reporting period. 40 CFR 5420a(b)(11) You must submit reports to the EPA via the CEDRI. (CEDRI can be accessed through the EPA's CDX (https://cdx.epa.gov/).) You must use the appropriate electronic report in CEDRI for this subpart or an alternate electronic file format consistent with the extensible markup language (XML) schema listed on the CEDRI Web site (https://www3.epa.gov/ttn/chief/cedri/). If the reporting form specific to this subpart is not available in CEDRI at the time that the report is due, you must submit the report to the Administrator at the appropriate address listed in §60.4. Once the form has been available in CEDRI for at least 90 calendar days, you must begin submitting all subsequent reports via CEDRI. The reports must be submitted by the deadlines specified in this subpart, regardless of the method in which the reports are submitted. No reports were submitted to the EPA via the CEDRI by Marathon during the reporting period. 40 CFR 5420a(b)(12) You must submit the certification signed by the qualified professional engineer according to §60.5411a(d) for each closed vent system routing to a control device or process. The certifications signed by a qualified professional engineer according to §60.5411a(d) were included in Appendix H for the wells included in Appendix A which were designed and constructed during the reporting period. Please do not hesitate to contact me if you require additional information concerning this report. Sincerely, (b) (6) Jeff Parker Appendix A -- List of Affected Facilities Sites | Well/Facility Name | API Number | Latitude | Longitude | |-------------------------|--------------|----------|-----------| | Bingo 24-10TFH | 33-061-03580 | (b) (9) | (b) (9) | | Marjorie 14-10H | 33-061-03579 | | | | JL Shobe 24-10TFH | 33-061-03581 | | | | Charlie 24-10H | 33-061-03582 | | | | Mikkelsen 11-14H | 33-061-03585 | | | | Ringer 14-21TFH | 33-025-02659 | | | | Trinity 14-21H | 33-025-02658 | | | | Wilhelm 24-21TFH | 33-025-02660 | | | | Ulmer 24-21H | 33-025-02661 | | | | Martinez USA 24-8H | 33-025-03025 | | | | Crosby USA 41-6H | 33-025-03005 | | | | Eagle USA 41-5H | 33-025-01867 | | | | Clarks Creek USA 14-35H | 33-053-06865 | | | | Charmaine USA 14-35TFH | 33-053-06864 | | | | Heather USA 13-35TFH | 33-053-06867 | | | | Juanita USA 13-35H | 33-053-06868 | | | | Raymond USA 41-4H | 33-061-01068 | | | | Maggie USA 21-4H | 33-061-03527 | | | | Hannah USA 31-4TFH | 33-061-03528 | | | | Rufus USA 21-4TFH | 33-061-03526 | | | | Goldberg USA 24-33TFH | 33-061-03523 | | | #### Appendix A -- List of Affected Facilities Sites | Well/Facility Name | API Number | Latitude | Longitude | |------------------------|--------------|----------|-----------| | Anton 34-33TFH | 33-061-03525 | (b) (9) | (b) (9) | | Gaynor 34-33H | 33-061-03524 | | | | Ronald 34-33TFH-2B | 33-061-03804 | | | | Ladonna Klatt 24-22H | 33-025-00733 | | | | Mattie 14-22TFH | 33-025-02515 | | | | Hollingsworth 24-22TFH | 33-025-02516 | | | | Darvey Klatt 44-22H | 33-025-00921 | | | | Arden USA 14-9TFH | 33-053-07508 | | | | Iron Woman USA 14-9H | 33-053-07921 | | | | Reno USA 24-9TFH-2B | 33-053-07506 | | | | Garness USA 31-4TFH-2B | 33-053-07474 | | | | Marcella USA 21-4TFH | 33-053-07473 | | | | Cunningham USA 31-4H | 33-053-07475 | | | | Lacey USA 11-5H | 33-061-03754 | | | | Trotter 14-23H | 33-025-00684 | | | | Pelton 24-31H | 33-025-00760 | | | | Darcy 34-32H | 33-025-00642 | | | | Larry Repp 31-6H | 33-025-00720 | | | | Oneil 24-24H | 33-025-00770 | | | | Oneil 34-24H | 33-025-00830 | | | | Marlin 24-12H | 33-025-00579 | | | | Hondo 34-12TFH | 33-025-03257 | | | | Quill 34-11H | 33-025-00810 | | | | Repp 34-34H | 33-025-00655 | | | | Oscar Stohler 41-4H | 33-025-00610 | | | Appendix A -- List of Affected Facilities Sites | Well/Facility Name | API Number | Latitude | Longitude | | | |-------------------------|--------------|----------|-----------|--|--| | Mittelstadt 34-12H | 33-025-03256 | (b) (9) | (b) (9) | | | | Fred Hansen 34-8H | 33-025-00749 | | | | | | Mary Hansen 14-9H | 33-025-00693 | | | | | | Moline 14-32H | 33-061-03755 | | | | | | Kermit USA 14-9H | 33-053-07507 | | | | | | Grady USA 21-4H | 33-053-07472 | | | | | | Homme 11-18TFH | 33-061-04007 | | | | | | Charchenko 14-21H | 33-025-00797 | | | | | | Beck 14-8H | 33-025-00649 | | | | | | Kukla 34-34H | 33-025-00606 | | | | | | Double H 34-8TFH | 33-025-02691 | | | | | | Stark 44-35TFH | 33-061-03725 | | | | | | Tescher 11-27H | 33-025-01071 | | | | | | Clarice USA 14-9H | 33-025-02687 | | | | | | Shrader 41-13H | 33-061-04004 | | | | | | Brush 24-8H | 33-025-02832 | | | | | | Harley 14-36TFH | 33-061-04002 | | | | | | WM & Agnes Scott 14-25H | 33-025-00818 | | | | | | Torrison 24-8TFH | 33-025-02831 | | | | | | Lund 44-35H | 33-061-04001 | | | | | | Appledoorn 14-19H | 33-025-00692 | | | | | | Christensen 34-33H | 33-025-00699 | | | | | | Beck 24-8H | 33-025-00636 | | | | | | Houser 14-36H | 33-061-04003 | | | | | | French 31-15TFH | 33-025-03262 | | | | | ## Appendix A -- List of Affected Facilities Sites | Well/Facility Name | API Number | Latitude | Longitude | |------------------------------|--------------|----------|-----------| | Voigt 11-15H | 33-025-00700 | (b) (9) | (b) (9) | | Kemp Trust | 33-025-00870 | | | | 21-14H | | | | | Chapman 31-15H | 33-025-03263 | | | | Spring 21-15TFH | 33-025-03264 | | | | Forsman USA 44-22H | 33-053-07703 | | | | Lockwood USA
44-22TFH | 33-053-07704 | | | | Lena USA 14-22H | 33-053-07922 | | | | Murphy 34-22TFH-2B | 33-053-07705 | | | | Veronica 14-22TFH | 33-053-06520 | | | | Begola USA 34-22H | 33-053-07706 | | | | Tat USA 14-22H | 33-053-06658 | | | | Tat USA 34-22H | 33-053-03182 | | | | Rough Coulee USA
24-22TFH | 33-053-06521 | | | | Deane USA 24-22H | 33-053-06522 | | | | Arkin 44-12TFH | 33-025-03294 | | | | BLUE CREEK
24-22TFH-2B | 33-053-06518 | | | | Bronett 14-7H | 33-025-03293 | | | | Ernst 14-7TFH | 33-025-03267 | | | | Kenneth 24-7TFH | 33-025-03268 | | | | Stroup 34-7TFH | 33-025-03270 | | | | Bethol 34-7H | 33-025-03269 | | | | Chauncey USA 31-2H | 33-053-07956 | | | | June USA 31-2H | 33-053-07958 | | | | Hunts Along USA
12-1H | 33-053-03083 | | | | Wilbur USA 31-2TFH | 33-053-07957 | | | #### Appendix A -- List of Affected Facilities Sites | Well/Facility Name | API Number | Latitude | Longitude | |---------------------------|--------------|----------|-----------| | Mark USA 11-1H | 33-053-07990 | (b) (9) | (b) (9) | | Winona USA
21-2TFH-2B | 33-053-07955 | | | | Shoots USA 41-2H | 33-053-07988 | | | | Miles 41-2TFH-2B | 33-053-07959 | | | | Mamie USA 21-11TFH | 33-053-07989 | | | | Demaray USA 41-2TFH | 33-053-07693 | | | | Bear Den 42-5TFH | 33-025-01773 | | | | Timothy USA
11-1TFH-2B | 33-053-07991 | | | | Struthers USA 41-5H | 33-025-03124 | | | | Ross 42-5H | 33-025-01774 | | | | Ryan 42-5TFH | 33-025-03123 | | | | Hillesland 31-3TFH | 33-025-02792 | | | | Rita 41-3TFH | 33-025-03310 | | | | Stanton 41-3H | 33-025-03309 | | | | Olea 24-11TFH | 33-025-03305 | | | | Sundby 24-11TFH | 33-025-03307 | | | | Marlene 34-11TFH | 33-025-03282 | | | | Hugo 34-11H | 33-025-03279 | | | | Chimney Butte 34-11H | 33-025-00804 | | | | Gravel Coulee 14-11TFH | 33-025-03311 | | | | McFadden 14-11H | 33-025-03304 | | | | Morrison 24-11H | 33-025-03306 | | | | Gifford 34-11TFH | 33-025-03280 | | | | Tipton 34-11H | 33-025-03281 | | | | Kattevold USA
14-34TFH | 33-061-04052 | | | Appendix A -- List of Affected Facilities Sites | Well/Facility Name | API Number | Latitude | Longitude | |---------------------------|--------------|----------|-----------| | Alexander USA
44-33TFH | 33-061-04050 | (b) (9) | (b) (9) | | Pfundheller USA
44-33H | 33-061-04051 | | | | Colvin USA 14-34TFH | 33-061-03831 | | | | Ranger USA 24-34TFH | 33-061-03833 | | | | Lois USA 14-34H | 33-061-04055 | | | Appendix B – Affected Facility Information | Well/Facility
Name | Well | Centrifugal | Reciprocating
Compressor | Pneumatic Controller | Pneumatic Pump | Storage Vessel | Fugitive Emissions
Components | |----------------------------|------|-------------|-----------------------------|----------------------|----------------|----------------|----------------------------------| | Bingo 24-10TFH | Yes | No | No |
No | No | Yes | Yes | | Marjorie 14-10H | Yes | No | No | No | No | Yes | Yes | | JL Shobe 24-
10TFH | Yes | No | No | No | No | Yes | Yes | | Charlie 24-10H | Yes | No | No | No | No | Yes | Yes | | Mikkelsen 11-
14H | Yes | No | No | No | No | Yes | Yes | | Ringer 14-21TFH | Yes | No | No | No | No | Yes | Yes | | Trinity 14-21H | Yes | No | No | No | No | Yes | Yes | | Wilhelm 24-
21TFH | Yes | No | No | No | No | Yes | Yes | | Ulmer 24-21H | Yes | No | No | No | No | Yes | Yes | | Martinez USA 24-
8H | Yes | No | No | No | No | Yes | Yes | | Crosby USA 41-
6H | Yes | No | No | No | No | Yes | Yes | | Eagle USA 41-5H | Yes | No | No | No | No | Yes | Yes | | Clarks Creek USA
14-35H | Yes | No | No | No | No | Yes | Yes | | Well/Facility
Name | Well | Centrifugal | Reciprocating | Pneumatic Controller | Pneumatic Pump | Storage Vessel | Fugitive Emissions
Components | |---------------------------|------|-------------|---------------|----------------------|----------------|----------------|----------------------------------| | Charmaine USA
14-35TFH | Yes | No | No | No | No | Yes | Yes | | Heather USA 13-
35TFH | Yes | No | No | No | No | Yes | Yes | | Juanita USA 13-
35H | Yes | No | No | No | No | Yes | Yes | | Raymond USA
41-4H | Yes | No | No | No | No | Yes | Yes | | Maggie USA 21-
4H | Yes | No | No | No | No | Yes | Yes | | Hannah USA 31-
4TFH | Yes | No | No | No | No | Yes | Yes | | Rufus USA 21-
4TFH | Yes | No | No | No | No | Yes | Yes | | Goldberg USA
24-33TFH | Yes | No | No | No | No | Yes | Yes | | Anton 34-33TFH | Yes | No | No | No | No | Yes | Yes | | Gaynor 34-33H | Yes | No | No | No | No | Yes | Yes | | Ronald 34-
33TFH-2B | Yes | No | No | No | No | Yes | Yes | | Ladonna Klatt 24-
22H | Yes | No | No | No | No | Yes | Yes | | Mattie 14-22TFH | Yes | No | No | No | No | Yes | Yes | | Well/Facility
Name | Well | Centrifugal
Compressor | Reciprocating
Compressor | Pneumatic Controller | Pneumatic Pump | Storage Vessel | Fugitive Emissions
Components | |----------------------------|------|---------------------------|-----------------------------|----------------------|----------------|----------------|----------------------------------| | Hollingsworth
24-22TFH | Yes | No | No | No | No | Yes | Yes | | Darvey Klatt 44-
22H | Yes | No | No | No | No | Yes | Yes | | Arden USA 14-
9TFH | Yes | No | No | No | No | Yes | Yes | | Iron Woman USA
14-9H | Yes | No | No | No | No | Yes | Yes | | Reno USA 24-
9TFH-2B | Yes | No | No | No | No | Yes | Yes | | Garness USA 31-
4TFH-2B | Yes | No | No | No | No | Yes | Yes | | Marcella USA 21-
4TFH | Yes | No | No | No | No | Yes | Yes | | Cunningham USA
31-4H | Yes | No | No | No | No | Yes | Yes | | Lacey USA 11-5H | Yes | No | No | No | No | Yes | Yes | | Trotter 14-23H | Yes | No | No | No | No | Yes | Yes | | Pelton 34-31H | Yes | No | No | No | No | Yes | Yes | | Darcy 34-32H | Yes | No | No | No | No | Yes | Yes | Appendix B - Affected Facility Information | Well/Facility
Name | Well | Centrifugal
Compressor | Reciprocating | Pneumatic Controller | Pneumatic Pump | Storage Vessel | Fugitive Emissions
Components | |-------------------------|------|---------------------------|---------------|----------------------|----------------|----------------|----------------------------------| | Larry Repp 31-6H | Yes | No | No | No | No | No | Yes | | Oneil 24-24H | Yes | No | No | No | No | Yes | Yes | | Oneil 34-24H | Yes | No | No | No | No | Yes | Yes | | Marlin 24-12H | Yes | No | No | No | No | Yes | Yes | | Hondo 34-12TFH | Yes | No | No | No | No | Yes | Yes | | Quill 34-11H | Yes | No | No | No | No | No | Yes | | Repp 34-34H | Yes | No | No | No | No | Yes | Yes | | Oscar Stohler 41-
4H | Yes | No | No | No | No | Yes | Yes | | Mittelstadt 34-
12H | Yes | No | No | No | No | Yes | Yes | | Fred Hansen 34-
8H | Yes | No | No | No | No | Yes | Yes | | Repp Trust 34-9H | Yes | No | No | No | No | No | Yes | | Mary Hansen 14-
9H | Yes | No | No | No | No | No | Yes | | Well/Facility
Name | Well | Centrifugal Compressor | Reciprocating
Compressor | Pneumatic Controller | Pneumatic Pump | Storage Vessel | Fugitive Emissions
Components | |-----------------------|------|------------------------|-----------------------------|----------------------|----------------|----------------|----------------------------------| | Moline 14-32H | Yes | No | No | No | No | Yes | Yes | | Kermit USA 14-
9H | Yes | No | No | No | No | Yes | Yes | | Grady USA 21-4H | Yes | No | No | No | No | Yes | Yes | | Homme 11-
18TFH | Yes | No | No | No | No | No | Yes | | Charchenko 14-
21H | Yes | No | No | No | No | No | Yes | | Beck 14-8H | Yes | No | No | No | No | Yes | Yes | | Kukla 34-34H | Yes | No | No | No | No | Yes | Yes | | Double H 34-
8TFH | Yes | No | No | No | No | Yes | Yes | | STARK 44-35TFH | Yes | No | No | No | No | Yes | Yes | | Tescher 11-27H | Yes | No | No | No | No | Yes | Yes | | Clarice USA 14-
9H | Yes | No | No | No | No | Yes | Yes | | Shrader 41-13H | Yes | No | No | No | No | No | Yes | | Well/Facility
Name | Well | Centrifugal Compressor | Reciprocating
Compressor | Pneumatic Controller | Pneumatic Pump | Storage Vessel | Fugitive Emissions
Components | |----------------------------|------|------------------------|-----------------------------|----------------------|----------------|----------------|----------------------------------| | Brush 24-8H | Yes | No | No | No | No | Yes | Yes | | HARLEY 14-36TFH | Yes | No | No | No | No | Yes | Yes | | WM & Agnes
Scott 14-25H | Yes | No | No | No | No | No | Yes | | Torrison 24-8TFH | Yes | No | No | No | No | Yes | Yes | | Lund 44-35H | Yes | No | No | No | No | Yes | Yes | | Appledorn 14-
19H | Yes | No | No | No | No | Yes | Yes | | Christensen 34-
33H | Yes | No | No | No | No | Yes | Yes | | Beck 24-8H | Yes | No | No | No | No | Yes | Yes | | Houser 14-36H | Yes | No | No | No | No | Yes | Yes | | French 31-15TFH | Yes | No | No | No | No | Yes | Yes | | Voigt 11-15H | Yes | No | No | No | No | Yes | Yes | | Kempf Trust
21-14H | Yes | No | No | No | No | Yes | Yes | | Well/Facility
Name | Well | Centrifugal | Reciprocating
Compressor | Pneumatic Controller | Pneumatic Pump | Storage Vessel | Fugitive Emissions
Components | |---------------------------------|------|-------------|-----------------------------|----------------------|----------------|----------------|----------------------------------| | Chapman 31-15H | Yes | No | No | No | No | Yes | Yes | | Spring 21-15TFH | Yes | No | No | No | No | Yes | Yes | | Forsman USA 44-
22H | Yes | No | No | No | No | Yes | Yes | | Lockwood USA
44-22TFH | Yes | No | No | No | No | Yes | Yes | | Lena USA 14-22H | Yes | No | No | No | No | Yes | Yes | | Murphy 34-
22TFH-2B | Yes | No | No | No | No | Yes | Yes | | Veronica 14-
22TFH | Yes | No | No | No | No | Yes | Yes | | Begola USA 34-
22H | Yes | No | No | No | No | Yes | Yes | | Tat USA 14-22H | Yes | No | No | No | No | Yes | Yes | | Tat USA 34-22H | Yes | No | No | No | No | Yes | Yes | | Rough Coulee
USA
24-22TFH | Yes | No | No | No | No | Yes | Yes | | Deane USA 24-
22H | Yes | No | No | No | No | Yes | Yes | | Well/Facility
Name | Well | Centrifugal | Reciprocating | Pneumatic Controller | Pneumatic Pump | Storage Vessel | Fugitive Emissions
Components | |---------------------------|------|-------------|---------------|----------------------|----------------|----------------|----------------------------------| | Arkin 44-12TFH | Yes | No | No | No | No | Yes | Yes | | BLUE CREEK
24-22TFH-2B | Yes | No | No | No | No | Yes | Yes | | Bronett 14-7H | Yes | No | No | No | No | Yes | Yes | | Ernst 14-7TFH | Yes | No | No | No | No | Yes | Yes | | Kenneth 24-7TFH | Yes | No | No | No | No | Yes | Yes | | Stroup 34-7TFH | Yes | No | No | No | No | Yes | Yes | | Bethol 34-7H | Yes | No | No | No | No | Yes | Yes | | Chauncey USA 31-
2H | Yes | No | No | No | No | Yes | Yes | | June USA 31-2H | Yes | No | No | No | No | Yes | Yes | | Hunts Along USA
12-1H | Yes | No | No | No | No | Yes | Yes | | Wilbur USA 31-
2TFH | Yes | No | No | No | No | Yes | Yes | | Mark USA 11-1H | Yes | No | No | No | No | Yes | Yes | | Well/Facility
Name | Well | Centrifugal | Reciprocating | Pneumatic Controller | Pneumatic Pump | Storage Vessel | Fugitive Emissions
Components | |---------------------------|------|-------------|---------------|----------------------|----------------|----------------|----------------------------------| | Winona USA
21-2TFH-2B | Yes | No | No | No | No | Yes | Yes | | Shoots USA 41-
2H | Yes | No | No | No | No | Yes | Yes | | Miles 41-2TFH-
2B | Yes | No | No | No | No | Yes | Yes | | Mamie USA 21-
11TFH | Yes | No | No | No | No | Yes | Yes | | Demaray USA 41-
2TFH | Yes | No | No | No | No | Yes | Yes | | Bear Den 42-
STFH | Yes | No | No | No | No | Yes | Yes | | Timothy USA
11-1TFH-2B | Yes | No | No | No | No | Yes | Yes | | Struthers USA
41-5H | Yes | No | No | No | No | Yes | Yes | | Ross 42-5H | Yes | No | No | No | No | Yes | Yes | | Ryan 42-5TFH | Yes | No | No | No | No | Yes | Yes | | Hillesland 31-
3TFH | Yes | No | No | No | No | Yes | Yes | | Rita 41-3TFH | Yes | No | No | No | No | Yes | Yes | | Well/Facility
Name | Well | Centrifugal | Reciprocating
Compressor | Pneumatic Controller | Pneumatic Pump | Storage Vessel | Fugitive Emissions
Components | |---------------------------|------|-------------|-----------------------------|----------------------|----------------|----------------|----------------------------------| | Stanton 41-3H | Yes | No | No | No | No | Yes | Yes | | Olea 24-11TFH | Yes | No | No | No | No | Yes | Yes | | Sundby 24-11TFH | Yes | No | No | No | No | Yes | Yes | | Marlene 34-
11TFH | Yes | No | No | No | No |
Yes | Yes | | Hugo 34-11H | Yes | No | No | No | No | Yes | Yes | | Chimney Butte
34-11H | Yes | No | No | No | No | Yes | Yes | | Gravel Coulee
14-11TFH | Yes | No | No | No | No | Yes | Yes | | McFadden 14-
11H | Yes | No | No | No | No | Yes | Yes | | Morrison 24-11H | Yes | No | No | No | No | Yes | Yes | | Gifford 34-11TFH | Yes | No | No | No | No | Yes | Yes | | Tipton 34-11H | Yes | No | No | No | No | Yes | Yes | | Kattevold USA
14-34TFH | Yes | No | No | No | No | Yes | Yes | | Well/Facility
Name | Well | Compressor | Reciprocating | Pneumatic Controller | Pneumatic Pump | Storage Vessel | Fugitive Emissions
Components | |---------------------------|------|------------|---------------|----------------------|----------------|----------------|----------------------------------| | Alexander USA
44-33TFH | Yes | No | No | No | No | TBD | Yes | | Pfundheller USA
44-33H | Yes | No | No | No | No | TBD | Yes | | Colvin USA 14-
34TFH | Yes | No | No | No | No | TBD | Yes | | Ranger USA 24-
34TFH | Yes | No | No | No | No | TBD | Yes | | Lois USA 14-34H | Yes | No | No | No | No | TBD | Yes | Appendix C - Well Completions with Hydraulic Fracturing | Well/Facility Name | API Number | Date and Time Flowback
Onset | Date and Time of
Flowback to Separator | Date and Time Flowback
Ended | Duration of Flowback | Duration and Disposition Recovery/Combustion/ Venting | |--------------------|--------------|---------------------------------|---|---------------------------------|----------------------|---| | Moline 14-32H | 33-061-03755 | 8/4/2017
16:00 | 8/4/2017
16:00 | 8/8/2017
05:00 | 110
hours | Combustion
for 110 hours | | Kermit USA 14-9H | 33-053-07507 | 8/3/2017
03:00 | 8/3/2017
03:00 | 8/11/2017
05:00 | 201
hours | Combustion
for 201 hours | | Grady USA 21-4H | 33-053-07472 | 8/10/2017
10:00 | 8/10/2017
10:00 | 8/19/2017
05:00 | 291
hours | Combustion
for 215 hours | | Homme 11-18TFH | 33-061-04007 | 8/19/2017
14:30 | 8/19/2017
14:30 | 8/25/2017
05:00 | 158.5
hours | Gas Sales and
Combustion
for 158.5
hours | | Charchenko 14-21H | 33-025-00797 | 8/23/2017
16:00 | 8/23/2017
16:00 | 8/29/2017
05:00 | 159
hours | Gas Sales and
Combustion
for 159 hours | | Beck 14-8H | 33-025-00649 | 8/26/2017
14:00 | 8/26/2017
14:00 | 9/8/2017
05:00 | 326
hours | Combustion
for 326 hours | | Kukla 34-34H | 33-025-00606 | 9/15/2017
07:00 | 9/15/2017
07:00 | 9/22/2017
05:00 | 185
hours | Combustion
for 185 hours | | Double H 34-8TFH | 33-025-02691 | 9/9/2017
14:30 | 9/9/2017
14:30 | 9/28/2017
05:00 | 381
hours | Combustions
for 381 hours | | Stark 44-35TFH | 33-061-03725 | 9/23/2017
05:00 | 9/23/2017
05:00 | 9/30/2017
12:00 | 157
hours | Combustion
for 157 hours | | Tescher 11-27H | 33-025-01071 | 9/21/2017
06:45 | 9/21/2017
06:45 | 10/1/2017
05:00 | 221
hours | Gas Sales and
Combustion
for 221 hours | | Clarice USA 14-9H | 33-025-02687 | 9/7/2017
16:00 | 9/7/2017
16:00 | 10/1/2017
05:00 | 517.5
hours | Combustion
for 517.5
hours | | Shrader 41-13H | 33-061-04004 | 8/28/2017
06:00 | 8/28/2017
06:00 | 9/30/2017
13:00 | 629
hours | Gas sales and
Combustion
for 629 hours | ## Appendix C - Well Completions with Hydraulic Fracturing | Well/Facility
Name | API Number | Date and Time Flowback Onset | Date and Time of Flowback
to Separator | Date and Time Flowback
Ended | Duration of Flowback | Duration and Disposition Recovery/Combustion/ | |----------------------------|--------------|------------------------------|---|---------------------------------|----------------------|---| | Brush 24-8H | 33-025-02832 | 9/1/2017
12:00 | 9/1/2017
12:00 | 10/2/2017
05:00 | 597
hours | Combustion
for 597 hours | | Harley 14-36TFH | 33-061-04002 | 9/27/2017
11:30 | 9/27/2017
11:30 | 10/4/2017
05:00 | 186
hours | Combustion
for 186 hours | | WM & Agnes Scott
14-25H | 33-025-00818 | 10/4/2017
6:00 | 10/4/2017
6:00 | 10/9/2017
10:00 | 119
hours | Combustion
for 119 hours | | Torrison 24-8TFH | 33-025-02831 | 9/30/2017
11:40 | 9/30/2017
11:40 | 10/10/2017
05:00 | 255
hours | Combustion
for 255 hours | | Lund 44-35H | 33-061-04001 | 9/30/2017
18:00 | 9/30/2017
18:00 | 10/11/2017
05:00 | 266
hours | Combustion
for 266 hours | | Appledorn 14-19H | 33-025-00692 | 10/8/2017
15:00 | 10/8/2017
15:00 | 10/16/2017
05:00 | 201
hours | Combustion
for 201 hours | | Christensen 34-
33H | 33-025-00699 | 10/6/2017
10:00 | 10/6/2017
10:00 | 10/17/2017
05:00 | 278
hours | Combustion
for 278 hours | | Beck 24-8H | 33-025-00636 | 10/4/2017
08:00 | 10/4/2017
08:00 | 10/18/2017
05:00 | 352
hours | Combustion
for 352 hours | | Houser 14-36H | 33-061-04003 | 10/4/2017
04:00 | 10/4/2017
04:00 | 10/27/2017
07:00 | 537
hours | Combustion
for 537 hours | | French 31-15TFH | 33-025-03262 | 10/18/2017
08:30 | 10/18/201
7 08:30 | 10/27/2017 | 237
hours | Combustion
for 237 hours | | Voigt 11-15H | 33-025-00700 | 10/11/2017
04:00 | 10/11/201
7 04:00 | 10/30/2017
05:00 | 476
hours | Combustion
for 476 hours | | Kemp Trust
21-14H | 33-025-00870 | 10/25/2017
14:00 | 10/25/201
7 14:00 | 11/5/2017
05:00 | 281
hours | Combustion
for 281 hours | | Chapman 31-15H | 33-025-03263 | 10/14/2017
07:00 | 10/14/201
7 07:00 | 11/8/2017
05:00 | 595
hours | Combustion
for 595 hours | ## Appendix C - Well Completions with Hydraulic Fracturing | Well/Facility Name | | | 0 | | | | |------------------------------|--------------|---------------------------------|---|---------------------------------|----------------------|---| | | API Number | Date and Time Flowback
Onset | Date and Time of Flowback to
Separator | Date and Time Flowback
Ended | Duration of Flowback | Duration and Disposition Recovery/Combustion/ | | Spring 21-15TFH | 33-025-03264 | 11/4/2017
10:00 | 11/4/2017
10:00 | 11/20/2017
05:00 | 399
hours | Combustion for
399 hours | | Forsman USA 44-22H | 33-053-07703 | 12/5/2017
09:00 | 12/5/2017
09:00 | 12/15/2017
05:00 | 260
hours | Combustion for
260 hours | | Lockwood USA
44-22TFH | 33-053-07704 | 12/10/2017
08:30 | 12/10/2017
08:30 | 12/21/2017
05:00 | 281
hours | Combustion for 281 hours | | Lena USA 14-22H | 33-053-07922 | 12/18/2017
01:00 | 12/18/2017
01:00 | 12/22/2017
05:00 | 92
hours | Combustion for
92 hours | | Murphy 34-22TFH-2B | 33-053-07705 | 12/13/2017
12:30 | 12/13/20171
12:30 | 12/27/2017
05:00 | 347
hours | Combustion for
347 hours | | Veronica 14-22TFH | 33-053-06520 | 12/16/2018
0:00 | 12/16/2018
0:00 | 12/27/2018
05:00 | 269
hours | Combustion for
269 hours | | Begola USA 34-22H | 33-053-07706 | 12/22/2017
16:30 | 12/22/2017
16:30 | 1/6/2018
05:00 | 353.5
hours | Combustion for
353.5 hours | | Tat USA 14-22H | 33-053-06658 | 12/23/2017
14:00 | 12/23/2017
14:00 | 1/6/2018
05:00 | 345.5
hours | Combustion for 353.5 hours | | Tat USA 34-22H | 33-053-03182 | 11/29/2017
13:50 | 11/29/2017
13:50 | 1/9/2018
05:00 | 296.65
hours | Combustion for
296.65 hours | | Rough Coulee USA
24-22TFH | 33-053-06521 | 12/29/2017
21:00 | 12/29/2017
21:00 | 1/11/2018
05:00 | 313.5
hours | Combustion for
296.65 hours | | Deane USA 24-22H | 33-053-06522 | 12/24/2017
17:00 | 12/24/2017
17:00 | 1/16/2018
05:00 | 516
hours | Combustion for 516 hours | | Arkin 44-12TFH | 33-025-03294 | 1/15/2018
08:15 | 1/15/2018
08:15 | 1/23/2018
05:00 | 211.25
hours | Combustion for
211.25 hours | | Blue Creek
24-22TFH-2B | 33-053-06518 | 1/18/2018
10:00 | 1/18/2018
10:00 | 1/24/2018
05:00 | 163
hours | Combustion for
163 hours | | Bronett 14-7H | 33-025-03293 | 1/24/2018
12:00 | 1/24/2018
12:00 | 2/1/2018
05:00 | 181.75
hours | Gas Sales and
Combustion for
181.75 | Appendix C - Well Completions with Hydraulic Fracturing | Well/Facility Name | API Number | Date and Time Flowback Onset | Date and Time of Flowback
to Separator | Date and Time Flowback
Ended | Duration of Flowback | Duration and Disposition Recovery/Combustion/ Venting | |--------------------------|--------------|------------------------------|---|---------------------------------|----------------------|---| | Ernst 14-7TFH | 33-025-03267 | 1/28/2018
12:15 | 1/28/2018
12:15 | 2/12/2018
05:00 | 366.25
hours | Gas Sales and
Combustion
for 366.25 | | Kenneth 24-7TFH | 33-025-03268 | 1/31/2018
13:00 | 1/31/2018
13:00 | 2/15/2018
05:00 | 371
hours | Gas Sales and
Combustion
for 371 hours | | Stroup 34-7TFH | 33-025-03270 | 1/31/2018
13:30 | 1/31/2018
13:30 | 2/16/2018
05:00 | 394.5
hours | Gas Sales and
Combustion
for 394.5
hours | | Bethol 34-7H | 33-025-03269 | 2/9/2017
09:30 | 2/9/2017
09:30 | 2/27/2017
05:00 | 451.5
hours | Gas Sales and
Combustion
for 451.5
hours | | Chauncey USA 31-2H | 33-053-07956 | 3/15/2018
15:00 | 3/15/2018
15:00 | 3/29/2018
05:00 | 315.7
hours | Gas Sales and
Combustion
for 315.7
hours | | June USA 31-2H | 33-053-07958 | 3/18/2018
08:00 | 3/18/2018
08:00 | 4/1/2018
05:00 | 323.25
hours | Gas Sales and
Combustion
for 323.25
hours | | Hunts Along USA
12-1H | 33-053-03083 | 3/26/2018
12:00 |
3/26/2018
08:00 | 4/12/2018
05:00 | 247
hours | Gas Sales and
Combustion
for 247 hours | | Wilbur USA 31-2TFH | 33-053-07957 | 3/30/2018
09:00 | 3/30/2018
09:00 | 4/12/2018
05:00 | 332.5
hours | Gas Sales and
Combustion
for 332 hours | #### Appendix C - Well Completions with Hydraulic Fracturing | Well/Facility Name | API Number | Date and Time Flowback Onset | Date and Time of Flowback to
Separator | Date and Time Flowback Ended | Duration of Flowback | Duration and Disposition Recovery/Combustion/ Venting | |---------------------------|--------------|------------------------------|---|------------------------------|----------------------|---| | Mark USA 11-1H | 33-053-07990 | 3/30/2018
09:00 | 3/30/2018
09:00 | 4/12/2018
05:00 | 333
hours | Combustion for
333 hours | | Winona USA
21-2TFH-2B | 33-053-07955 | 4/2/2018
12:00 | 4/2/2018
12:00 | 4/16/2018
05:00 | 348
hours | Gas Sales and
Combustion for
348 hours | | Shoots USA 41-2H | 33-053-07988 | 4/2/2018
12:00 | 4/2/2018
12:00 | 4/17/2018
05:00 | 373.5
hours | Combustion for 373.5 hour | | Miles 41-2TFH-2B | 33-053-07959 | 4/7/2018
07:00 | 4/7/2018
07:00 | 4/24/2018
05:00 | 425
hours | Gas Sales and
Combustion for
348 hours | | Mamie USA 21-11TFH | 33-053-07989 | 4/14/2018
09:15 | 4/14/2018
09:15 | 4/27/2018
05:00 | 307
hours | Gas Sales and
Combustion for
307 hours | | Demaray USA 41-2TFH | 33-053-07693 | 4/20/2018
09:00 | 4/20/2018
09:00 | 5/2/2018
05:00 | 272
hours | Gas Sales and
Combustion for
272 hours | | Bear Den 42-5TFH | 33-025-01773 | 4/24/2018
12:30 | 4/24/2018
12:30 | 5/1/2018
08:00 | 134
hours | Gas Sales and
Combustion for
134 hours | | Timothy USA
11-1TFH-2B | 33-053-07991 | 4/20/2018
08:30 | 4/20/2018
08:30 | 5/30/2018
05:00 | 947.4
hours | Gas Sales and
Combustion for
947.4 hours | | Struthers USA 41-5H | 33-025-03124 | 5/2/2018
09:00 | 5/2/2018
09:00 | 5/15/2018
05:00 | 299.5
hours | Combustion for 299.5 hours | | Ross 42-5H | 33-025-01774 | 5/4/2018
13:30 | 5/4/2018
13:30 | 5/19/2018
05:00 | 345
hours | Combustion for 345 hours | # Appendix C – Well Completions with Hydraulic Fracturing | Well/Facility Name | | ack | back | ack | × | lon /u | |----------------------------|--------------|---------------------------------|---|---------------------------------|----------------------|---| | | API Number | Date and Time Flowback
Onset | Date and Time of Flowback
to Separator | Date and Time Flowback
Ended | Duration of Flowback | Duration and Disposition Recovery/Combustion/ Venting | | Ryan 42-5TFH | 33-025-03123 | 5/15/2018
12:30 | 5/15/2018
12:30 | 5/24/2018
05:00 | 206.5
hours | Combustion for
296.5 hours | | Hillesland 31-3TFH | 33-025-02792 | 5/9/2018
18:45 | 5/9/2018
18:45 | 5/24/2018
10:00 | 242.2
5
hours | Combustion for 242.25 hours | | Rita 41-3TFH | 33-025-03310 | 5/20/2018
14:00 | 5/20/2018
14:00 | 6/3/2018
05:00 | 327
hours | Combustion for 327 hours | | Stanton 41-3H | 33-025-03309 | 5/25/2018
17:15 | 5/25/2018
17:15 | 6/9/2018
05:00 | 347.2
5
hours | Combustion for 347.25 hours | | Olea 24-11TFH | 33-025-03305 | 6/2/2018
17:00 | 6/2/2018
17:00 | 6/14/2018
12:00 | 283.0
0
hours | Combustion for
283 hours | | Sundby 24-11TFH | 33-025-03307 | 6/4/2018
08:30 | 6/4/2018
08:30 | 6/18/2018
05:00 | 347.5
0
hours | Combustion for 347.50 hours | | Marlene 34-11TFH | 33-025-03282 | 6/10/2018
11:00 | 6/10/2018
11:00 | 6/21/2018
05:00 | 258.5
hours | Combustion for
258.5 hours | | Hugo 34-11H | 33-025-03279 | 6/21/2018
14:00 | 6/21/2018
14:00 | 6/28/2018
05:00 | 178
hours | Combustion for
178 hours | | Chimney Butte 34-
11H | 33-025-00804 | 6/6/2018
15:50 | 6/6/2018
15:50 | 6/28/2018
13:00 | 487.5
hours | Combustion for
487.5 hours | | Gravel Coulee 14-
11TFH | 33-025-03311 | 6/15/2018
12:00 | 6/15/2018
12:00 | 7/1/2018
00:00 | 396
hours | Combustion for
396 hours | | McFadden 14-11H | 33-025-03304 | 6/20/2018
14:00 | 6/20/2018
14:00 | 7/5/2018
05:00 | 351
hours | Combustion for
351 hours | Appendix C - Well Completions with Hydraulic Fracturing | Well/Facility Name | API Number | Date and Time Flowback Onset | Date and Time of Flowback
to Separator | Date and Time Flowback
Ended | Duration of Flowback | Duration and Disposition Recovery/Combustion/ | |---------------------------|--------------|------------------------------|---|---------------------------------|----------------------|---| | Morrison 24-11H | 33-025-03306 | 6/18/2018
08:00 | 6/18/2018
08:00 | 7/6/2018
05:00 | 412
hours | Combustion
for 412 hours | | Gifford 34-11TFH | 33-025-03280 | 6/21/2018
14:00 | 6/21/2018
14:00 | 7/7/2018
00:00 | 394
hours | Combustion
for 412 hours | | Tipton 34-11H | 33-025-03281 | 6/28/2018
14:00 | 6/28/2018
14:00 | 7/7/2018
03:00 | 201
hours | Combustion
for 201 hours | | Kattevold USA
14-34TFH | 33-061-04052 | 7/11/2018
07:00 | 7/11/2018
07:00 | 7/21/2018
03:00 | 227.5
hours | Combustion
for 227.5
hours | | Alexander USA
44-33TFH | 33-061-04050 | 7/7/2018
07:00 | 7/7/2018
07:00 | 7/25/2018
05:00 | 422
hours | Combustion
for 422 hours | | Pfundheller USA
44-33H | 33-061-04051 | 7/21/2018
14:00 | 7/21/2018
14:00 | 7/31/2018
03:00 | 229
hours | Combustion
for 229 hours | | Colvin USA 14-34TFH | 33-061-03831 | 7/20/2018
08:00 | 7/20/2018
08:00 | 8/1/2018
03:00 | 298
hours | Combustion
for 298 hours | | Ranger USA 24-34TFH | 33-061-03833 | 7/23/2018
08:00 | 7/23/2018
08:00 | 8/8/2018
05:00 | 368.5
hours | Combustion
for 368 hours | | Lois USA 14-34H | 33-061-04055 | 7/27/2018
09:00 | 7/27/2018
09:00 | 8/9/2018
05:00 | 315.75
hours | Combustion
for 315.75
hours | #### Appendix D - Storage Vessel Affected Facilities | Well/Facility Name | Latitude | Longitude
(b) (9) | | |----------------------|----------|----------------------|--| | Bingo Pad | (b) (9) | | | | Mikkelsen Pad | | | | | Martinez USA Pad | | | | | Ringer Pad | | | | | Eagle USA Pad | | | | | Clarks Creek USA Pad | | | | | Raymond USA Pad | | | | | Goldberg USA Pad | | | | | Ladonna Klatt CTB | | | | | Kermit USA Pad | | | | | Trotter 14-23H | | | | | Pelton 24-31H | | | | | Darcy Pad | | | | | Oneil 24-24H | | | | | Oneil 34-24H | | | | | Marlin 14 Pad | | | | | Mary Hansen 14-9H | | | | | Fred Hansen 34-8H | | | | | Quill 34-11H | | | | | Repp 34-34H | | | | | Oscar Stohler 41-4H | | | | #### Appendix D – Storage Vessel Affected Facilities | Well/Facility Name | Latitude | Longitude | | |--|----------|-----------|--| | Moline Pad | (b) (9) | (b) (9) | | | Grady USA Pad | | | | | William Kukla CTB | | | | | Beck Pad CTB | | | | | Big Head Pad (Stark
CTB) | | | | | Tescher 11-27H | | | | | Delia USA Pad | | | | | Appledoorn 14-19H | | | | | Christensen 34-33H | | | | | Chapman CTB | | | | | Voigt 11-15H | | | | | Kempf Trust 21-14H | | | | | TAT USA 34 Pad | | | | | Veronica USA Pad | | | | | Bethol CTB | | | | | Sherman USA Pad | | | | | Hunts Along USA
Pad | | | | | Bear Den Pad | | | | | Stohler 41 CTB | | | | | Earl Pennington USA
Pad (Kattevold CTB) | | | | | Appendix E- Storage Vessel Affected | Facility VOC Emission Rate De | terminations | |-------------------------------------|-------------------------------|--------------| Completion Name | Field | Date | Down Time Hours(1) | Actual Oil Production | |-------------------|--------------------------|-----------------|--------------------|-----------------------| | Appledoorn 14-19H | Bailey | 10/25/2017 | 0 | 235.45701 | | Appledoorn 14-19H | Bailey | 10/26/2017 | 0 | 660.17224 | | Appledoorn 14-19H | Bailey | 10/27/2017 | 0 | 925.41247 | | Appledoorn 14-19H | Bailey | 10/28/2017 | 20 | 586.69333 | | Appledoorn 14-19H | Bailey | 10/29/2017 | 0 | 609.60465 | | Appledoorn 14-19H | Bailey | 10/30/2017 | 0 | 673.71542 | | Appledoorn 14-19H | Bailey | 10/31/2017 | 0 | 712.07529 | | Appledoorn 14-19H | Bailey | 11/1/2017 | 0 | 723.8894581 | | Appledoorn 14-19H | Bailey | 11/2/2017 | 0 | 744.15339 | | Appledoorn 14-19H | Bailey | 11/3/2017 | 0 | 794.5719896 | | Appledoorn 14-19H | Bailey | 11/4/2017 | 0 | 867.2822222 | | Appledoorn 14-19H | Bailey | 11/5/2017 | 0 | 665.2126783 | | Appledoorn 14-19H | Bailey | 11/6/2017 | 0 | 762.8264622 | | Appledoorn 14-19H | Bailey | 11/7/2017 | 0 | 626.8413788 | | Appledoorn 14-19H | Bailey | 11/8/2017 | 0 | 564.757465 | | Appledoorn 14-19H | Bailey | 11/9/2017 | 0 | 699.0567161 | | Appledoorn 14-19H | Bailey | 11/10/2017 | 0 | 608.6959788 | | Appledoorn 14-19H | Bailey | 11/11/2017 | 4 | 573.2978615 | | Appledoorn 14-19H | Bailey | 11/12/2017 | 0 | 607.1278464 | | Appledoorn 14-19H | Bailey | 11/13/2017 | 3 | 648.4546971 | | Appledoorn 14-19H | Bailey | 11/14/2017 | 0 | 637.1506296 | | Appledoorn 14-19H | Bailey | 11/15/2017 | 0 | 617.2041761 | | Appledoorn 14-19H | Bailey | 11/16/2017 | 0 | 627.0484968 | | Appledoorn 14-19H | Bailey | 11/17/2017 | 0 | 631.753366 | | Appledoorn 14-19H | Bailey | 11/18/2017 | 2 | 516.739648 | | Appledoorn 14-19H | Bailey | 11/19/2017 | 2 | 566.1015671 | | Appledoorn 14-19H | Bailey | 11/20/2017 | 8 | 541.7316602 | | Appledoorn 14-19H | Bailey | 11/21/2017 | 0 | 634.7707876 | | Appledoorn 14-19H | Bailey | 11/22/2017 | 8 | 428.3353633 | | Appledoorn 14-19H | Bailey | 11/23/2017 | 6.00 |
646.2398743 | | | Average -10/25/2017 thro | ough 11/23/2017 | | 637.8791374 | Appledoorn 14-19H NSPS OOOOa Applicability Determination for Storage tanks Appledoorn 14-19H Well name 637.8791374 Average of first thirty days of production after re-frack, bbl/d 10/18/2017 Date of first production after re-frack 3 Number of oil tanks 7/25/2017 Date of LACT unit installation 0.6 Decline factor 7.22 Storage tank emissions - total 41276-41278 Tank numbers | Completion Name | Field | Date | | Down Time Hours(1) | Actual Oil Production | |-----------------|------------------|---------------------|-----------|--------------------|-----------------------| | Bear Den CTB | Lost Bridge | | 5/24/2018 | ö | .3401.58 | | Bear Den CTB | Lost Bridge | | 5/25/2018 | 0 | 3906.50 | | Bear Den CTB | Lost Bridge | | 5/26/2018 | 0 | 3948.92 | | Bear Den CTB | Lost Bridge | | 5/27/2018 | 0 | 3723.75 | | Bear Den CTB | Lost Bridge | | 5/28/2018 | 0 | 2432.83 | | Bear Den CTB | Lost Bridge | | 5/29/2018 | 0 | 3334.42 | | Bear Den CTB | Lost Bridge | | 5/30/2018 | 0 | 3188.67 | | Bear Den CTB | Lost Bridge | | 5/31/2018 | 0 | 2673.17 | | Bear Den CTB | Lost Bridge | | 6/1/2018 | 0 | 3441.17 | | Bear Den CTB | Lost Bridge | | 6/2/2018 | 0 | 4320.50 | | Bear Den CTB | Lost Bridge | | 6/3/2018 | 0 | 4745.42 | | Bear Den CTB | Lost Bridge | | 6/4/2018 | 0 | 5348.58 | | Bear Den CTB | Lost Bridge | | 6/5/2018 | 0 | 5032.17 | | Bear Den CTB | Lost Bridge | | 6/6/2018 | 0 | 4677.33 | | Bear Den CTB | Lost Bridge | | 6/7/2018 | 0 | 4277.83 | | Bear Den CTB | Lost Bridge | | 6/8/2018 | 0 | 2955.33 | | Bear Den CTB | Lost Bridge | | 6/9/2018 | 0 | 2788.75 | | Bear Den CTB | Lost Bridge | | 6/10/2018 | 0 | 2637.42 | | Bear Den CTB | Lost Bridge | | 6/11/2018 | 0 | 2670.08 | | Bear Den CTB | Lost Bridge | | 6/12/2018 | 0 | 2337.17 | | Bear Den CTB | Lost Bridge | | 6/13/2018 | 0 | 2355.83 | | Bear Den CTB | Lost Bridge | | 6/14/2018 | 0 | 2510.67 | | Bear Den CTB | Lost Bridge | | 6/15/2018 | 0 | 2098.23 | | Bear Den CTB | Lost Bridge | | 6/16/2018 | 0 | 633.19 | | Bear Den CTB | Lost Bridge | | 6/17/2018 | 0 | 102.58 | | Bear Den CTB | Lost Bridge | | 6/18/2018 | Ö. | 644.65 | | Bear Den CTB | Lost Bridge | | 6/19/2018 | 0 | 1127.35 | | Bear-Den CTB | Lost Bridge | | 6/20/2018 | 0 | 1254.42 | | Bear Den CTB | Lost Bridge | | 6/21/2018 | 0 | 2248.25 | | Bear Den CTB | Lost Bridge | | 6/22/2018 | 0 | 2952.33 | | | Average 5/24/201 | 8 through 6/22/2018 | | | 2925.64 | | | | | | | | Bear Den 42-STFH, Ross 42-5H, Ryan 42-STFH, Struthers USA 41-5H NSPS OOOOa Applicability Determination for Storage tanks Bear Den CTB Facility Name 2925.64 Average of first thirty days of production 5/24/2018 Date of first production 6 Number of oil tanks Date of LACT unit installation 0.6 Decline factor 33.12 Storage tank emissions - total 2865-2870 Tank numbers 2868, 2869, 2870 LACT permissive tank | Completion Name | Field | Date | | Down Time Hours(1) | Actual Oil Production | | |-----------------|---------------|----------------------------|------------|--------------------|-----------------------|--| | Beck CTB | Bailey | | 10/19/2017 | 0 | 6012.11 | | | Beck CTB | Bailey | | 10/20/2017 | 0 | 6384.73 | | | Beck CTB | Bailey | | 10/21/2017 | 0 | 6100.23 | | | Beck CTB | Bailey | | 10/22/2017 | 0 | 5416.97 | | | Beck CTB | Bailey | | 10/23/2017 | 0 | 4815.80 | | | Beck CTB | Bailey | | 10/24/2017 | 0 | 5002.95 | | | Beck.CTB | Bailey | | 10/25/2017 | 0 | 4988.46 | | | Beck CTB | Bailey | | 10/26/2017 | 0 | 5143.34 | | | Beck CTB | Bailey | | 10/27/2017 | 0 | 4416:71 | | | Beck CTB | Bailey | | 10/28/2017 | 0 | 4267.75 | | | Beck CTB | Bailey | | 10/29/2017 | 0 | 3390.10 | | | Beck CTB | Bailey | | 10/30/2017 | 0 | 3610.42 | | | Beck CTB | Bailey | | 10/31/2017 | 0 | 3810.81 | | | Beck CTB | Bailey | | 11/1/2017 | 0 | 3969.36 | | | Beck CTB | Bailey | | 11/2/2017 | 0 | 4348.81 | | | Beck CTB | Bailey | | 11/3/2017 | 0 | 4103.52 | | | Beck CTB | Bailey | | 11/4/2017 | 0 | 4032.91 | | | Beck CTB | Bailey | | 11/5/2017 | 0 | 3934.85 | | | Beck CTB | Bailey | | 11/6/2017 | 0 | 3707.51 | | | Beck CTB | Bailey | | 11/7/2017 | 0 | 3470.55 | | | Beck CTB | Bailey | | 11/8/2017 | 0 | 3071.96 | | | Beck CTB | Bailey | | 11/9/2017 | 0 | 2046.78 | | | Beck CTB | Bailey | | 11/10/2017 | 0 | 2430.13 | | | Beck CTB | Bailey | | 11/11/2017 | 0 | 2107.18 | | | Beck CTB | Bailey | | 11/12/2017 | 0 | 2592.24 | | | Beck CTB | Bailey | | 11/13/2017 | 0 | 2649.89 | | | Beck CTB | Bailey | | 11/14/2017 | 0 | 2731.80 | | | Beck CTB | Bailey | | 11/15/2017 | 0 | 3223.16 | | | Beck CTB | Bailey | | 11/16/2017 | 0 | 3293.51 | | | Beck-CTB | Bailey | | 11/17/2017 | 0 | 3193.65 | | | | Average -10/1 | 18/2017 through 11/17/2017 | | | 3942.31 | | BRU5H 24-8H, BECK 24-8H, BECK 14-8H, DOUBLE H 34-8TFH, HAMMEL 44-8TFH, TORRISON 24-8TFH NSPS OOOOa Applicability Determination for Storage tanks Beck CTB Facility Name 3942.31 Average of first thirty days of production after re-frack, bbl/d 10/19/2017 Date of first production after re-frack 12 Number of oil tanks Date of LACT unit installation 0.6. Decline factor 44.63 Storage tank emissions - total 43999-44010 Tank numbers | Completion Name | Field | Date | | Down Time Hours(1) | Actual Oil Produ | ction | |-----------------|-------------|-----------------------------|-----------|--------------------|------------------|-------| | Bethol CTB | Bailey | | 2/28/2018 | O | 61: | 25.02 | | Bethol CTB | Bailey | | 3/1/2018 | O | 61 | 64.34 | | Bethol CTB | Bailey | | 3/2/2018 | O | 576 | 63.22 | | Bethol CTB | Bailey | | 3/3/2018 | O | 61. | 16.90 | | Bethol CTB | Bailey | | 3/4/2018 | O | 71 | 93.13 | | Bethol CTB | Bailey | | 3/5/2018 | C | 510 | 05.13 | | Bethol CTB | Bailey | | 3/6/2018 | C | 424 | 44.16 | | Bethol CTB | Bailey | | 3/7/2018 | C | 52 | 34.41 | | Bethol CTB | Bailey | | 3/8/2018 | C | 60: | 31.55 | | Bethol CTB | Bailey | | 3/9/2018 | C | 625 | 57.75 | | Bethol CT8 | Bailey | | 3/10/2018 | C | 620 | 01.51 | | Bethol CT8 | Bailey | | 3/11/2018 | C | 598 | 88.25 | | 8ethol CTB | Bailey | | 3/12/2018 | C | 44 | 60.98 | | Bethol CTB | Bailey | | 3/13/2018 | C | 510 | 04.13 | | Bethol CTB | Bailey | | 3/14/2018 | C | 32 | 47.28 | | Bethal CTB | Bailey | | 3/15/2018 | C | 46 | D4.32 | | Bethol CTB | Bailey | | 3/16/2018 | C | 46 | 73.29 | | Bethol CTB | Bailey | | 3/17/2018 | C | 579 | 99.98 | | Bethol CTB | Bailey | | 3/18/2018 | C | 61 | 77.99 | | Bethol CTB | Bailey | | 3/19/2018 | C | 66 | 41.19 | | Bethol CTB | Bailey | | 3/20/2018 | C | 47 | 10.10 | | Bethol CTB | Bailey | | 3/21/2018 | C | 50 | 28.89 | | Bethol CTB | Bailey | | 3/22/2018 | C | 65 | 92.19 | | Bethol CTB | Bailey | | 3/23/2018 | C | 61: | 17.85 | | Bethol CTB | Bailey | | 3/24/2018 | C | 55 | 74.20 | | Bethol CTB | Bailey | | 3/25/2018 | C | 62 | 47.06 | | Bethol CTB | Bailey | | 3/26/2018 | C | 72 | 58.50 | | Bethol CTB | Bailey | | 3/27/2018 | C | 49 | 14.15 | | Bethol CTB | Bailey | | 3/28/2018 | C | 70 | 01.68 | | Bethol CTB | Bailey | | 3/29/2018 | C | 62 | 40.59 | | | Average 12/ | 15/2017 through 1/13/7/2018 | | | 569 | 93.99 | Bethol 34-7H, Stroup 34-7TFH, Kenneth 24-7TFH, Ernst 14-7TFH, Bronnett 14-7H, Arkin 44-1TFH, and Kevin Buehner 31-18H NSPS OOOOa Applicability Determination for Storage tanks Bethol CTB Facility Name 5693.99 Average of first thirty days of production 2/28/2018 Date of first production 16 Number of oil tanks Date of LACT unit Installation 0.6 Decline factor 64.46 Storage tank emissions - total 44021-44036 Tank numbers 44029, 44035, 44036 LACT permissive tank | Completion Name | Field | Date | | Down Time Hours(1) | Actual Oil Production | |-----------------|------------------------|-------------------|---------|--------------------|-----------------------| | Chapman CTB | | 11/ | 21/2017 | 0 | 2361.84 | | Chapman CTB | Reunion Bay | 11/ | 22/2017 | 0 | 2330.10 | | Chapman CTB | Reunion Bay | 11/ | 23/2017 | 0 | 2236.65 | | Chapman CTB | Reunion Bay | 11/ | 24/2017 | 0 | 2114.27 | | Chapman CTB | Reunion Bay | 11/ | 25/2017 | 0 | 2071.35 | | Chapman CTB | Reunion Bay | 11/ | 26/2017 | 0 | 1863.71 | | Chapman CTB | Reunion Bay | 11/3 | 27/2017 | 0 | 1741.24 | | Chapman CTB | Reunion Bay | 11/3 | 28/2017 | 0 | 1624.49 | | Chapman CTB | Reunion Bay | 11/3 | 29/2017 | 0 | 1661.80 | | Chapman CTB | Reunion Bay | 11/ | 30/2017 | 0 | 1662.53 | | Chapman CTB | Reunion Bay | 12 | /1/2017 | 0 | 1636.66 | | Chapman CTB | Reunion Bay | 12 | /2/2017 | 0 | 1610.95 | | Chapman CTB | Reunion Bay | 12 | /3/2017 | 0 | 1575.44 | | Chapman CTB | Reunion Bay | 12 | /4/2017 | 0 | 1579.96 | | Chapman CTB | Reunion Bay | 12 | /5/2017 | 0 | 1575.26 | | Chapman CTB | Reunion Bay | 12 | /6/2017 | 0 | 1509.68 | | Chapman CTB | Reunion Bay | 12 | /7/2017 | 0 | 903.78 | | Chapman CTB | Reunion Bay | 12 | /8/2017 | 0 | 842.75 | | Chapman CTB | Reunion Bay | 12 | /9/2017 | 0 | 1573.09 | | Chapman CTB | Reunion Bay | 12/ | 10/2017 | 0 | 1702.87 | | Chapman CTB | Reunion Bay | 12/ | 11/2017 | 0 | 1428.51 | | Chapman CTB | Reunion Bay | 12/ | 12/2017 | 0 | 1517.18 | | Chapman CTB | Reunion Bay | 12/: | 13/2017 | 0 | 1366.16 | | Chapman CTB | Reunion Bay | 12/ | 14/2017 | 0 | 1404.64 | | Chapman CTB | Reunion Bay | 12/: | 15/2017 | 0 | 1578.95 | | Chapman CTB | Reunion Bay | 12/: | 16/2017 | 0 | 1592.93 | | Chapman CTB | Reunion Bay | 12/: | 17/2017 | 0 | 1507.10 | | Chapman CTB | Reunion Bay | 12/: | 18/2017 | 0 | 1510.89 | | Chapman CTB | Reunion Bay | 12/: | 19/2017 | 0 | 1141.23 | | Chapman CTB | Reunion Bay | 12/2 | 20/2017 | 0. | 1791.16 | | | Average -11/21/2017 th | hrough 12/20/2017 | | | 1633.91 | ### NSPS OOOOa Applicability Determination for Storage tanks Chapman CTB Facility Name 1633.91 Average of first thirty days of production after re-frack, bbl/d 11/21/2017 Date of first production after re-frack 9 Number of oil tanks 11/21/2017 Date of LACT unit installation 0.6 Decline factor 18.50 Storage tank emissions - total 44011-44019 Tank numbers 44015, 44019 LACT
permissive tank | Completion Name | Field | Date | | Down Time Hours(1 | 1) | Actual Oil Production | |--------------------|--------------|----------------------------|------------|-------------------|----|------------------------------| | Christensen 34-33H | Bailey | | 10/18/2017 | 1 | 0 | 627.60 | | Christensen 34-33H | Bailey | | 10/19/2017 | | 0 | 909.05 | | Christensen 34-33H | Bailey | | 10/20/2017 | 1 | 0 | 773.21 | | Christensen 34-33H | Bailey | | 10/21/2017 | | 0 | 772.87 | | Christensen 34-33H | Bailey | | 10/22/2017 | 1 | 0 | 789.44 | | Christensen 34-33H | Bailey | | 10/23/2017 | 1 | 0 | 767.62 | | Christensen 34-33H | Bailey | | 10/24/2017 | 1 | 0 | 801.41 | | Christensen 34-33H | Bailey | | 10/25/2017 | ! | 0 | 758.89 | | Christensen 34-33H | Bailey | | 10/26/2017 | (| 0 | 766.04 | | Christensen 34-33H | Bailey | | 10/27/2017 | (| 0 | 746.51 | | Christensen 34-33H | Bailey | | 10/28/2017 | (| 0 | 726.60 | | Christensen 34-33H | Bailey | | 10/29/2017 | ! | 0 | 729.62 | | Christensen 34-33H | Bailey | | 10/30/2017 | 1 | 0 | 717.95 | | Christensen 34-33H | Bailey | | 10/31/2017 | (| 0 | 698.09 | | Christensen 34-33H | Bailey | | 11/1/2017 | 1 | 0 | 684.06 | | Christensen 34-33H | Bailey | | 11/2/2017 | 1 | 0 | 671.03 | | Christensen 34-33H | Bailey | | 11/3/2017 | 1 | 0 | 670.52 | | Christensen 34-33H | Bailey | | 11/4/2017 | | 0 | 665.21 | | Christensen 34-33H | Bailey | | 11/5/2017 | 1 | 0 | 735 .71 | | Christensen 34-33H | Bailey | | 11/6/2017 | 1 | 0 | 596.50 | | Christensen 34-33H | Bailey | | 11/7/2017 | 1 | 0 | 640.64 | | Christensen 34-33H | Bailey | | 11/8/2017 | | 0 | 634.36 | | Christensen 34-33H | Bailey | | 11/9/2017 | 1 | 0 | 625.95 | | Christensen 34-33H | Bailey | | 11/10/2017 | | 0 | 630.86 | | Christensen 34-33H | Bailey | | 11/11/2017 | 1 | 0 | 605.19 | | Christensen 34-33H | Bailey | | 11/12/2017 | 1 | 0 | 606.80 | | Christensen 34-33H | Bailey | | 11/13/2017 | 1 | 0 | 575.66 | | Christensen 34-33H | Bailey | | 11/14/2017 | i | 0 | 5 75.5 4 | | Christensen 34-33H | Bailey | | 11/15/2017 | 1 | 0 | 559.31 | | Christensen 34-33H | Bailey | | 11/16/2017 | 1 | 0 | 562.29 | | | Average -10/ | 18/2017 through 11/16/2017 | | | | 687.48 | Christensen 34-33H NSPS OOOOa Applicability Determination for Storage tanks Christensen 34-33H Well name 687.48 Average of first thirty days of production after re-frack, bbl/d 10/18/2017 Date of first production after re-frack 3 Number of oil tanks Date of LACT unit Installation 1 Decline factor 12.97 Storage tank emissions - total 41401-41403 Tank numbers | Completion Name | Field | Date | | Down Time Hours(1 |) | Actual Oil Production | |-----------------|------------------------|------------------|------------|-------------------|---|-----------------------| | Delia CTB | Bailey | | 10/2/2017 | (|) | 2934.25 | | Delia CTB | Bailey | | 10/3/2017 | (|) | 4603.11 | | Delia CTB | Bailey | | 10/4/2017 | (|) | 4676.30 | | Delia CTB | Bailey | | 10/5/2017 | (|) | 4311.03 | | Delia CTB | Bailey | | 10/6/2017 | (|) | 4001.92 | | Delia CTB | Bailey | | 10/7/2017 | (|) | 3930.02 | | Delia CTB | Bailey | | 10/8/2017 | (|) | 3516.95 | | Delia CTB | Bailey | | 10/9/2017 | (|) | 3600.39 | | Delia CTB | Bailey | | 10/10/2017 | (|) | 3710.92 | | Delia CTB | Bailey | | 10/11/2017 | (|) | 3374.35 | | Delia CTB | Bailey | | 10/12/2017 | (|) | 3289.91 | | Delia CTB | Bailey | | 10/13/2017 | (|) | 3194.64 | | Delia CTB | Bailey | | 10/14/2017 | (|) | 3108.42 | | Delia CTB | Bailey | | 10/15/2017 | (|) | 2641.46 | | Delia CTB | Bailey | | 10/16/2017 | (|) | 2848.22 | | Delia CTB | Bailey | | 10/17/2017 | (|) | 3164.72 | | Delia CTB | Bailey | | 10/18/2017 | (|) | 1822.49 | | Delia CTB | Bailey | | 10/19/2017 | (|) | 1384.74 | | Delia CTB | Bailey | | 10/20/2017 | (|) | 1279.69 | | Delia CTB | Bailey | | 10/21/2017 | (|) | 1556.07 | | Delia CTB | Bailey | | 10/22/2017 | (|) | 2336.51 | | Delia CTB | Bailey | | 10/23/2017 | (|) | 2771.38 | | Delia CTB | Bailey | | 10/24/2017 | (|) | 2261.25 | | Delia CTB | Bailey | | 10/25/2017 | (|) | 2844.31 | | Delia CTB | Bailey | | 10/26/2017 | (|) | 2762.46 | | Delia CTB | Bailey | | 10/27/2017 | (|) | 2654.60 | | Delia CTB | Bailey | | 10/28/2017 | (|) | 2562.93 | | Delia CTB | Bailey | | 10/29/2017 | (|) | 2483.98 | | Delia CTB | Bailey | | 10/30/2017 | (|) | 2328.63 | | Delia CTB | Bailey | | 10/31/2017 | (|) | 2372.99 | | | Average -10/2/2017 thi | rough 11/17/2017 | | | | 2944.29 | Delia USA 14-9TFH, Clarice USA 14-9H ### NSPS OOOOa Applicability Determination for Storage tanks Delia CTB Facility Name 2944.29 Average of first thirty days of production after re-frack, bbl/d 10/2/2017 Date of first production after re-frack 3 Number of oil tanks 10/2/2017 Date of LACT unit installation 0.6 Decline factor 33.33 Storage tank emissions - total 43544-43549 Tank numbers | Completion Name | Field | Date | Down Time Hours(1) | Actual Oil Production | |-------------------|---|-----------|--------------------|-----------------------| | KATTEVOLD USA CTB | Reunuin Bay | 8/1/2018 | 0 | 4711.86 | | KATTEVOLD USA CTB | Reunuin Bay | 8/2/2018 | 0 | 5734.97 | | KATTEVOLD USA CTB | Reunuin Bay | 8/3/2018 | 0 | 4726.78 | | KATTEVOLD USA CTB | Reunuin Bay | 8/4/2018 | 0 | 5987.60 | | KATTEVOLD USA CTB | Reunuin Bay | 8/5/2018 | 0 | 6177.23 | | KATTEVOLD USA CTB | Reunuin Bay | 8/6/2018 | 0 | 5341.88 | | KATTEVOLD USA CTB | Reunuin Bay | 8/7/2018 | 0 | 6119.18 | | KATTEVOLD USA CTB | Reunuln Bay | 8/8/2018 | 0 | 4568.80 | | KATTEVOLD USA CTB | Reunuin Bay | 8/9/2018 | 0 | 4934.29 | | KATTEVOLD USA CTB | Reunuin Bay | 8/10/2018 | 0 | 2601.39 | | KATTEVOLD USA CTB | Reunuin Bay | 8/11/2018 | 0 | 1895.35 | | KATTEVOLD USA CTB | Reunuin Bay | 8/12/2018 | 0 | 1961.98 | | KATTEVOLD USA CTB | Reunuin Bay | 8/13/2018 | 0 | 1436.23 | | KATTEVOLD USA CTB | Reunuin Bay | 8/14/2018 | 0 | 1477.17 | | KATTEVOLD USA CTB | Reunuin Bay | 8/15/2018 | 0 | 1636.88 | | KATTEVOLD USA CTB | Reunuin Bay | 8/16/2018 | 0 | 1486.73 | | KATTEVOLD USA CTB | Reunuin Bay | 8/17/2018 | 0 | 1030.18 | | KATTEVOLD USA CTB | Reunuin Bay | 8/18/2018 | 0 | 1529.05 | | KATTEVOLD USA CTB | Reunuin Bay | 8/19/2018 | 0 | 1577.30 | | KATTEVOLD USA CTB | Reunuin Bay | 8/20/2018 | 0 | 2457.93 | | KATTEVOLD USA CTB | Reunuin Bay | 8/21/2018 | 0 | 2750.49 | | KATTEVOLD USA CTB | Reunuin Bay | 8/22/2018 | 0 | 2918.10 | | KATTEVOLD USA CTB | Reunuin Bay | 8/23/2018 | 0 | 2641.30 | | KATTEVOLD USA CTB | Reunuin Bay | 8/24/2018 | 0 | 3280.57 | | KATTEVOLD USA CTB | Reunuin Bay | 8/25/2018 | 0 | 6253.80 | | KATTEVOLD USA CTB | Reunuin Bay | 8/26/2018 | 0 | 6174.07 | | KATTEVOLD USA CTB | Reunuin Bay | 8/27/2018 | 0 | 5695.16 | | KATTEVOLD USA CTB | Reunuin Bay | 8/28/2018 | 0 | 5132.99 | | KATTEVOLD USA CTB | Reunuin Bay | 8/29/2018 | 0 | 5264.55 | | KATTEVOLD USA CTB | Reunuin Bay | 8/30/2018 | 0 | 5054.32 | | | Average 8/1/2018 throu | · · | | 3751.94 | | | • | * · · | | | KATTEVOLD USA 14-34TFH, ALEXANDER USA 44-33TFH, PFUNDHELLER USA 44-33H NSPS OOOOa Applicability Determination for Storage tanks Earl Pennington Pad/ KATTEVOLD USA CTB Facility Name 3751.94 Average of first thirty days of production 8/1/2018 Date of first production 7 Number of oil tanks 0.5 Decline factor 30.39 Storage tank emissions - total 2888-2894 Tank numbers 2889, 2891, 2893, 2894, LACT permissive tank | Completion Name | Field | Date | | Down Time Hou | rs | Actual Oil Production | |---------------------|------------------------|---------------|-----------|---------------|----|-----------------------| | Hunts Along USA CTB | Antelope | | 5/31/2018 | | 0 | 282.72 | | Hunts Along USA CTB | Antelope | | 6/1/2018 | | 0 | 8702.27 | | Hunts Along USA CTB | Antelope | | 6/2/2018 | | 0 | 8864.40 | | Hunts Along USA CTB | Antelope | | 6/3/2018 | | 0 | 5868.86 | | Hunts Along USA CTB | Antelope | | 6/4/2018 | | 0 | 5485.74 | | Hunts Along USA CTB | Antelope | | 6/5/2018 | | 0 | 5274.59 | | Hunts Along USA CTB | Antelope | | 6/6/2018 | | 0 | 5419.94 | | Hunts Along USA CTB | Antelope | | 6/7/2018 | | 0 | 7191.69 | | Hunts Along USA CTB | Antelope | | 6/8/2018 | | 0 | 8788.62 | | Hunts Along USA CTB | Antelope | | 6/9/2018 | | 0 | 9342.04 | | Hunts Along USA CTB | Antelope | | 6/10/2018 | | 0 | 8264.17 | | Hunts Along USA CTB | Antelope | | 6/11/2018 | | 0 | 6638.05 | | Hunts Along USA CTB | Antelope | | 6/12/2018 | | 0 | 5020.03 | | Hunts Along USA CTB | Antelope | | 6/13/2018 | | 0 | 4428.58 | | Hunts Along USA CTB | Antelope | | 6/14/2018 | | 0 | 6431.83 | | Hunts Along USA CTB | Antelope | | 6/15/2018 | | 0 | 7913.93 | | Hunts Along USA CTB | Antelope | | 6/16/2018 | | 0 | 9210.29 | | Hunts Along USA CIB | Antelope | | 6/17/2018 | | 0 | 10310.95 | | Hunts Along USA CIB | Antelope | | 6/18/2018 | | 0 | 7177.00 | | Hunts Along USA CTB | Antelope | | 6/19/2018 | | 0 | 9545.47 | | Hunts Along USA CTB | Antelope | | 6/20/2018 | | 0 | 8709.27 | | Hunts Along USA CTB | Antelope | | 6/21/2018 | | 0 | 9246.99 | | Hunts Along USA CTB | Antelope | | 6/22/2018 | | 0 | 8858.00 | | Hunts Along USA CTB | Antelope | | 6/23/2018 | | 0 | 8694.51 | | Hunts Along USA CTB | Antelope | | 6/24/2018 | | 0 | 8734.81 | | Hunts Along USA CTB | Antelope | | 6/25/2018 | | 0 | 8145.49 | | Hunts Along USA CTB | Antelope | | 6/26/2018 | | 0 | 8190.63 | | Hunts Along USA CTB | Antelope | | 6/27/2018 | | 0 | 8015.16 | | Hunts Along USA CTB | Antelope | | 6/28/2018 | | 0 | 7660.08 | | Hunts Along USA CTB | Antelope | | 6/29/2018 | | 0 | 7836.45 | | - | Average 5/31/2018 thro | ugh 6/29/2018 | | | | 7475.09 | Hunts Along USA 12-1H, Mamie USA 21-1TFH, Mark USA 11-1H, and Timothy USA 11-1TFH-28, Shoots USA 41-2H, Demaray USA 41-2TFH NSPS OOOOa Applicability Determination for Storage tanks Hunts Along USA Pad Facility Name 7475.09 Average of first thirty days of production 5/31/2018 Date of first production
14 Number of oil tanks Date of LACT unit installation 0.5 Decline factor 60.55 Storage tank emissions - total 2871-2883, 2887 Tank numbers 2874, 2875, 2878, 2880, 2882 LACT permissive tanks | Completion Name | Field | Date | Down Time Hours(1) | Actual Oil Production | |--------------------|----------------|--------------------------|--------------------|------------------------------| | Kempf Trust 21-14H | Bailey | 11/6/2017 | 0 | 573.42 | | Kempf Trust 21-14H | Bailey | 11/7/2017 | 0 | 788.66 | | Kempf Trust 21-14H | Bailey | 11/8/2017 | 0 | 759.78 | | Kempf Trust 21-14H | Bailey | 11/9/2017 | 0 | 707.71 | | Kempf Trust 21-14H | Bailey | 11/10/2017 | 0 | 692.57 | | Kempf Trust 21-14H | Bailey | 11/11/2017 | 0 | 632.97 | | Kempf Trust 21-14H | Bailey | 11/1 2/20 17 | 0 | 654.72 | | Kempf Trust 21-14H | Bailey | 11/ 13/20 17 | 0 | 595.41 | | Kempí Trust 21-14H | Bailey | 11/14/2017 | 0 | 617.24 | | Kempf Trust 21-14H | Bailey | 11/15/2017 | 0 | 580.39 | | Kempf Trust 21-14H | Bailey | 11/16/2017 | 0 | 567.81 | | Kempf Trust 21-14H | Bailey | 11/17/2017 | 0 | 570.63 | | Kempf Trust 21-14H | Bailey | 11/18/2017 | 0 | 539.23 | | Kempf Trust 21-14H | Bailey | 11/19/2017 | 0 | 555.01 | | Kempf Trust 21-14H | Bailey | 11/20/2017 | 0 | 560.53 | | Kempf Trust 21-14H | Bailey | 11/21/2017 | 0 | 569.51 | | Kempf Trust 21-14H | Bailey | 11/22/2017 | 0 | 554.41 | | Kempf Trust 21-14H | Bailey | 11/23/2017 | 0 | 609.57 | | Kempf Trust 21-14H | Bailey | 11/24/2017 | 0 | 620.35 | | Kempf Trust 21-14H | Bailey | 11/25/2017 | 0 | 597.93 | | Kempf Trust 21-14H | Bailey | 11/26/2017 | 0 | \$9 5.06 | | Kempf Trust 21-14H | Bailey | 11/27/2017 | 0 | 573.34 | | Kempf Trust 21-14H | Bailey | 11/28/2017 | 0 | 567.27 | | Kempf Trust 21-14H | Bailey | 11/29/2017 | 0 | 559.38 | | Kempf Trust 21-14H | Bailey | 11/30/2017 | 0 | 536.39 | | Kempf Trust 21-14H | Bailey | 12/1/2017 | 0 | 542.31 | | Kempf Trust 21-14H | Bailey | 12/2/2017 | o | 536.47 | | Kempf Trust 21-14H | Bailey | 12/3/2017 | 0 | 514.87 | | Kempf Trust 21-14H | Bailey | 12/4/2017 | 0 | 508.53 | | Kempf Trust 21-14H | Bailey | 12/5/2017 | 0 | 500.71 | | | Average -10/31 | /2017 through 11/29/2017 | | 592.74 | Kempf Trust 21-14H NSPS OOOOa Applicability Determination for Storage tanks Kempf Trust 21-14H Well name 592.74 Average of first thirty days of production after re-frack, bbl/d 10/31/2017 Date of first production after re-frack 3 Number of oil tanks 9/27/2017 Date of LACT unit installation 1 Decline factor 11.19 Storage tank emissions - total 41658-41660 Tank numbers | Completion Name | Field | Date | Down Time Hours(1) | Actual Oil Production | |------------------|-----------------|-------------------------|--------------------|-----------------------| | Veronica USA CTB | Antelope | 1/25/20 | 018 | 9944.45 | | Veronica USA CTB | Antelope | 1/26/20 | 018 | 9454.80 | | Veronica USA CTB | Antelope | 1/27/20 | 018 | 9112.89 | | Veronica USA CTB | Antelope | 1/28/20 | 018 0 | 9183.73 | | Veronica USA CTB | Antelope | 1/29/20 | 018 | 9540.03 | | Veronica USA CTB | Antelope | 1/30/20 | 018 | 9476.08 | | Veronica USA CTB | Antelope | 1/31/20 | 018 | 9958.40 | | Veronica USA CTB | Antelope | 2/1/20 | 018 | 8248.78 | | Veronica USA CTB | Antelope | 2/2/20 | 018 | 4613.06 | | Veronica USA CTB | Antelope | 2/3/20 | 018 | 4520.94 | | Veronica USA CTB | Antelope | 2/4/20 | 018 | 3556.49 | | Veronica USA CTB | Antelope | 2/5/20 | 018 | 3606.44 | | Veronica USA CTB | Antelope | 2/6/20 | 018 | 4333.97 | | Veronica USA CTB | Antelope | 2/7/20 | 018 | 5076.18 | | Veronica USA CTB | Antelope | 2/8/20 | 018 0 | 4843.84 | | Veronica USA CTB | Antelope | 2/9/20 | 0 0 | 4697.06 | | Veronica USA CTB | Antelope | 2/10/20 | 018 | 4587.03 | | Veronica USA CTB | Antelope | 2/11/20 | 0 0 | 4420.82 | | Veronica USA CTB | Antelope | 2/12/20 |)18 0 | 4527.99 | | Veronica USA CTB | Antelope | 2/13/20 | 018 | 4777.86 | | Veronica USA CTB | Antelope | 2/14/20 | 018 | 5477.97 | | Veronica USA CTB | Antelope | 2/15/20 | 0 0 | 6518.27 | | Veronica USA CTB | Antelope | 2/16/20 | 018 | 6687.84 | | Veronica USA CTB | Antelope | 2/17/20 | 018 | 6525.28 | | Veronica USA CTB | Antelope | 2/18/20 | 018 | 5369.58 | | Veronica USA CTB | Antelope | 2/19/20 | 018 | 5560.02 | | Veronica USA CTB | Antelope | 2/20/20 | 018 | 5955.73 | | Veronica USA CTB | Antelope | 2/21/20 | 018 | 5667.58 | | Veronica USA CTB | Antelope | 2/22/20 | 018 | 4265.76 | | Veronica USA CTB | Antelope | 2/23/20 | 018 | 4606.03 | | | Average 12/15/2 | 017 through 1/13/7/2018 | | 6170.50 | | | | | | | Blue Creek USA 24-22TFH-28, Deane USA 24-22H, Rough Coulee USA 24-22TFH, TAT USA 14-22H, Veronica USA 14-22TF, Lena USA 14-22H NSPS OOOOa Applicability Determination for Storage tanks Veronica USA Pad Facility Name 6170.50 Average of first thirty days of production 1/25/2018 Date of first production 21 Number of oil tanks Date of LACT unit installation 0.5 Decline factor 49.98 Storage tank emissions - total 2821-2841 Tank numbers 2824, 2425,2834, 2840, 2841 | Completion Name | Field | Date | | Down Time Hours(1) | Actual Oil Production | |------------------|----------------|-----------------------|-----------|--------------------|-----------------------| | Sherman USA CTB | Antelope | | 4/24/2018 | 0 | 5571.09 | | Sherman USA CTB | Antelope | | 4/25/2018 | 0 | 5362.58 | | Sherman USA CTB | Antelope | | 4/26/2018 | 0 | 7728.89 | | Sherman USA CTB | Antelope | | 4/27/2018 | 0 | 9876.11 | | Sherman USA CTB | Antelope | | 4/28/2018 | 0 | 11161.88 | | Sherman USA CTB | Antelope | | 4/29/2018 | 0 | 11019.61 | | Sherman USA CTB | Antelope | | 4/30/2018 | 0 | 11490.46 | | Sherman USA CTB | Antelope | | 5/1/2018 | 0 | 10207.29 | | Sherman USA CTB | Antelope | | 5/2/2018 | 0 | 10520.86 | | Sherman USA CTB | Antelope | | 5/3/2018 | 0 | 10507.29 | | Sherman USA CTB | Antelope | | 5/4/2018 | 0 | 10738.72 | | Sherman USA CTB | Antelope | | 5/5/2018 | 0 | 10042.06 | | Sherman USA CTB | Antelope | | 5/6/2018 | 0 | 9909.17 | | Sherman USA CTB | Antelope | | 5/7/2018 | 0 | 10764.07 | | Sherman USA CTB | Antelope | | 5/8/2018 | 0 | 10897.38 | | Sherman USA CTB | Antelope | | 5/9/2018 | 0 | 10342.89 | | Sherman USA CTB | Antelope | | 5/10/2018 | 0 | 10036.36 | | Sherman USA CTB | Antelope | | 5/11/2018 | 0 | 9455.08 | | Sherman USA CTB | Antelope | | 5/12/2018 | 0 | 9706:27 | | Sherman USA CTB | Antelope | | 5/13/2018 | 0 | 9777.00 | | Sherman USA CTB | Antelope | | 5/14/2018 | 0 | 10006.27 | | Sherman USA CTB | Antelope | | 5/15/2018 | 0 | 9898.41 | | Sherman USA CTB. | Antelope | | 5/16/2018 | 0 | 9009.41 | | Sherman USA CTB | Antelope | | 5/17/2018 | 0 | 9728.87 | | Sherman USA CTB | Antelope | | 5/18/2018 | 0 | 9658.28 | | Sherman USA CTB | Antelope | | 5/19/2018 | 0 | 9416.53 | | Sherman USA CTB | Antelope | | 5/20/2018 | 0 | 8821.56 | | Sherman USA CTB | Antelope | | 5/21/2018 | 0 | 7920.40 | | Sherman USA CTB | Antelope | | 5/22/2018 | 0 | 6688.38 | | Sherman USA CTB | Antelope | | 5/23/2018 | 0 | 8104.85 | | | Average 4/24/2 | 018 through 5/23/2018 | | | 9478.93 | Winona USA 21-2TFH-2B, Chauncey USA 31-2H, Wilbur USA 31-2TFH, June USA 31-2H, Miles USA 41-2TFH-2B NSPS OOOOa Applicability Determination for Storage tanks Hunts Along USA Pad Facility Name 9478.93 Average of first thirty days of production 4/24/2018 Date of first production 9 Number of oil tanks Date of LACT unit installation 0.5 Decline factor 76.79 Storage tank emissions - total 2856-2864 Tank numbers 2860, 2862, 2864 LACT permissive tank | Completion Name | Field | Date | | Down Time Hours(1 |) | Actual Oil Production | |-----------------|--------------------|--------------------|------------|-------------------|---|-----------------------| | Stark CTB | Reunion Bay | | 10/27/2017 | (|) | 6739.65 | | Stark CTB | Reunion Bay | | 10/28/2017 | (|) | 6542.82 | | Stark CTB | Reunion Bay | | 10/29/2017 | (|) | 6360.04 | | Stark CTB | Reunion Bay | | 10/30/2017 | (|) | 5979.75 | | Stark CTB | Reunion Bay | | 10/31/2017 | (|) | 5823.56 | | Stark CTB | Reunion Bay | | 11/1/2017 | (|) | 5848.13 | | Stark CTB | Reunion Bay | | 11/2/2017 | (|) | 5735.86 | | Stark CTB | Reunion Bay | | 11/3/2017 | C |) | 5605.41 | | Stark CTB | Reunion Bay | | 11/4/2017 | (|) | 5456.91 | | Stark CTB | Reunion Bay | | 11/5/2017 | (|) | 5303.25 | | Stark CTB | Reunion Bay | | 11/6/2017 | (|) | 5176.33 | | Stark CTB | Reunion Bay | | 11/7/2017 | (|) | 5181.08 | | Stark CTB | Reunion Bay | | 11/8/2017 | (|) | 4795.99 | | Stark CTB | Reunion Bay | | 11/9/2017 | (|) | 4926.49 | | Stark CTB | Reunion Bay | | 11/10/2017 | (|) | 4194.50 | | Stark CTB | Reunion Bay | | 11/11/2017 | (|) | 4130.83 | | Stark CTB | Reunion Bay | | 11/12/2017 | (|) | 4008.00 | | Stark CTB | Reunion Bay | | 11/13/2017 | (|) | 3876.51 | | Stark CTB | Reunion Bay | | 11/14/2017 | (|) | 3568.29 | | Stark CTB | Reunion Bay | | 11/15/2017 | (|) | 136.92 | | Stark CTB | Reunion Bay | | 11/16/2017 | (|) | 92.92 | | Stark CTB | Reunion Bay | | 11/17/2017 | (|) | 0.00 | | Stark CTB | Reunion Bay | | 11/18/2017 | (|) | 0.00 | | Stark CTB | Reunion Bay | | 11/19/2017 | (|) | 0.00 | | Stark CTB | Reunion Bay | | 11/20/2017 | (|) | 95.00 | | Stark CTB | Reunion Bay | | 11/21/2017 | (|) | 1346.92 | | Stark CTB | Reunion Bay | | 11/22/2017 | (|) | 3293.60 | | Stark CTB | Reunion Bay | | 11/23/2017 | (|) | 2806.21 | | Stark CTB | Reunion Bay | | 11/24/2017 | (|) | 2930.30 | | Stark CTB | Reunion Bay | | 11/25/2017 | (|) | 981.98 | | | Average -10/2/2017 | through 10/30/2017 | | | | 3697.91 | ### NSPS OOOOa Applicability Determination for Storage tanks Stark CTB Facility Name 3697.91 Average of first thirty days of production after re-frack, bbl/d 10/27/2017 Date of first production after re-frack 14 Number of oil tanks 10/27/2017 Date of LACT unit installation 0.5 Decline factor 34.89 Storage tank emissions - total 2842-2855 Tank numbers 2849, 2854 LACT permissive tank | Completion
Name | Field | Date | | Down Time Hours(1) | Actual Oil Production | |-----------------|--------|----------------------|-----------|--------------------|-----------------------| | Stohler 41 CTB | Bailey | | 6/10/2018 | 0 | 4673.13 | | Stohler 41 CTB | Bailey | | 6/11/2018 | 0 | 4559.27 | | Stohler 41 CTB | Bailey | | 6/12/2018 | 0 | 4517.16 | | Stohler 41 CTB | Bailey | | 6/13/2018 | 0 | 4450.30 | | Stohler 41 CTB | Bailey | | 6/14/2018 | 0 | 3605.16 | | Stohler 41 CTB | Bailey | | 6/15/2018 | 0 | 1813.92 | | Stohler 41 CTB | Bailey | | 6/16/2018 | 0 | 1369.48 | | Stohler 41 CTB | Bailey | | 6/17/2018 | 0 | 1363.52 | | Stohler 41 CTB | Bailey | | 6/18/2018 | 0 | 1406.12 | | Stohler 41 CTB | Bailey | | 6/19/2018 | 0 | 1246.44 | | Stohler 41 CTB | Bailey | | 6/20/2018 | 0 | 409.45 | | Stohler 41 CTB | Bailey | | 6/21/2018 | 0 | 9.38 | | Stohler 41 CTB | 8ailey | | 6/22/2018 | 0 | 617.25 | | Stohler 41 CTB | Bailey | | 6/23/2018 | 0 | 248.78 | | Stohler 41 CTB | Bailey | | 6/24/2018 | 0 | 35.19 | | Stohler 41 CTB | Bailey | | 6/25/2018 | 0 | 1117.59 | | Stohler 41 CTB | Bailey | | 6/26/2018 | 0 | 1259.84 | | Stohler 41 CTB | Bailey | | 6/27/2018 | 0 | 1371.83 | | Stohler 41 CTB | Bailey | | 6/28/2018 | 0 | 1164.07 | | Stohler 41 CTB | Bailey | | 6/29/2018 | 0 | 1.00 | | Stohler 41 CTB | Bailey | | 6/30/2018 | 0 | 297.35 | | Stohler 41 CTB | Bailey | | 7/1/2018 | 0 | 1999.11 | | Stohler 41 CTB | Bailey | | 7/2/2018 | 0 | 1675.04 | | Stohler 41 CTB | Bailey | | 7/3/2018 | 0 | 1818.37 | | Stohler 41 CTB | Bailey | | 7/4/2018 | 0 | 2213.93 | | Stohler 41 CTB | Bailey | | 7/5/2018 | 0 | 3274.92 | | Stohler 41 CTB | Bailey | | 7/6/2018 | 0 | 4241.81 | | Stohler 41 CTB | Bailey | | 7/7/2018 | 0 | 4557.92 | | Stohler 41 CTB | Bailey | | 7/8/2018 | 0 | 4979.08 | | Stohler 41 CTB | Bailey | | 7/9/2018 | 0 | 4567.04 | | | • | 018 through 7/9/2018 | , . , | | 4418.75 | | | | <u> </u> | | | | $Stohler\ 21-3H,\ Stohler\ 41-3H,\ Hillesland\ 31-3TFH,\ Rita\ 41-3TFH,\ and\ Stanton\ 41-3H\\ NSPS\ OOOOa\ Applicability\ Determination\ for\ Storage\ tanks$ Stohler 41 CTB Facility Name 4418.75 Average of first thirty days of production 6/10/2018 Date of first production 6 Number of oil tanks Date of LACT unit installation 0.6 Decline factor 50.03 Storage tank emissions - total 44046-44051 Tank numbers | Completion Name | Field | Date | Down Time Hours(1) | · Actual Oil Production | |-----------------|-----------------------|------------------|--------------------|-------------------------| | Tescher 11-27H | Bailey | 10/2/2017 | 0 | 1054.13 | | Tescher 11-27H | Bailey | 10/3/2017 | 0 | 1066.74 | | Tescher 11-27H | Bailey | 10/4/2017 | 0 | 1031.04 | | Tescher 11-27H | Bailey | 10/5/2017 | 0 | 1039.66 | | Tescher 11-27H | Bailey | 10/6/2017 | 0 | 1022.99 | | Tescher 11-27H | Bailey | 10/7/2017 | 0 | 1014.55 | | Tescher 11-27H | Bailey | 10/8/2017 | 0 | 980.09 | | Tescher 11-27H | Bailey | 10/9/2017 | 0 | 964.79 | | Tescher 11-27H | Bailey | 10/10/2017 | 0 | 959.47 | | Tescher 11-27H | Bailey | 10/11/2017 | 0 | 862.50 | | Tescher 11-27H | Bailey | 10/12/2017 | 0 | 984.25 | | Tescher 11-27H | Bailey | 10/13/2017 | 0 | 1018.64 | | Tescher 11-27H | Bailey | 10/14/2017 | 0 | 981.53 | | Tescher 11-27H | Bailey | 10/15/2017 | 0 | 1001.35 | | Tescher 11-27H | Bailey | 10/16/2017 | 0 | 1009.31 | | Tescher 11-27H | Bailey | 10/17/2017 | 0 | 962.31 | | Tescher 11-27H | Bailey | 10/18/2017 | 0 | 953.40 | | Tescher 11-27H | Bailey | 10/19/2017 | 0 | 930.40 | | Tescher 11-27H | Bailey | 10/20/2017 | 0 | 909.73 | | Tescher 11-27H | Bailey | 10/21/2017 | 0 | 905.18 | | Tescher 11-27H | Bailey | 10/22/2017 | 0 | 879.61 | | Tescher 11-27H | Bailey | 10/23/2017 | 0 | 862.03 | | Tescher 11-27H | Bailey | 10/24/2017 | 0 | 845.35 | | Tescher 11-27H | Bailey | 10/25/2017 | 0 | 831.96 | | Tescher 11-27H | Bailey | 10/26/2017 | 0 | 823.66 | | Tescher 11-27H | Bailey | 10/27/2017 | 0 | 808.49 | | Tescher 11-27H | Bailey | 10/28/2017 | 0 | 792.15 | | Tescher 11-27H | Bailey | 10/29/2017 | 0 | 777.14 | | Tescher 11-27H | Bailey | 10/30/2017 | 0 | 780.83 | | Tescher 11-27H | Bailey | 10/31/2017 | 0 | 761.44 | | | Average -10/2/2017 th | rough 10/31/2017 | | 927.16 | Tescher 11-27H ### NSPS OOOOa Applicability Determination for Storage tanks Tescher 11-27H Well name 927.1581097 Average of first thirty days of production after re-frack, bbl/d 8/29/2017 Date of first production after re-frack 3 Number of oil tanks Date of LACT unit installation 1 Decline factor 17.50 Storage tank emissions - total 41915-41917 Tank numbers | Completion Name | Field | Date | Actual Oil Production | |-----------------|-------------------------|------------|-----------------------| | Voight 11-15H | Murphy Creek | 10/30/2017 | 337.53 | | Voight 11-15H | Murphy Creek | 10/31/2017 | 573.42 | | Voight 11-15H | Murphy Creek | 11/1/2017 | 788.66 | | Voight 11-15H | Murphy Creek | 11/2/2017 | 759.78 | | Voight 11-15H | Murphy Creek | 11/3/2017 | 707.71 | | Voight 11-15H | Murphy Creek | 11/4/2017 | 692.57 | | Voight 11-15H | Murphy Creek | 11/5/2017 | 632.97 | | Voight 11-15H | Murphy Creek | 11/6/2017 | 654.72 | | Voight 11-15H | Murphy Creek | 11/7/2017 | 595.41 | | Voight 11-15H | Murphy Creek | 11/8/2017 | 617.24 | | Voight 11-15H | Murphy Creek | 11/9/2017 | 580.39 | | Voight 11-15H | Murphy Creek | 11/10/2017 | 567.81 | | Voight 11-15H | Murphy Creek | 11/11/2017 | 570.63 | | Voight 11-15H | Murphy Creek | 11/12/2017 | 539.23 | | Voight 11-15H | Murphy Creek | 11/13/2017 | 555.01 | | Voight 11-15H | Murphy Creek | 11/14/2017 | 560.53 | | Voight 11-15H | Murphy Creek | 11/15/2017 | 569.51 | | Voight 11-15H | Murphy Creek | 11/16/2017 | 554.41 | | Voight 11-15H | Murphy Creek | 11/17/2017 | 609.57 | | Voight 11-15H | Murphy Creek | 11/18/2017 | 620.35 | | Voight 11-15H | Murphy Creek | 11/19/2017 | 597.93 | | Voight 11-15H | Murphy Creek | 11/20/2017 | 595.06 | | Voight 11-15H | Murphy Creek | 11/21/2017 | 573.34 | | Voight 11-15H | Murphy Creek | 11/22/2017 | 567.27 | | Voight 11-15H | Murphy Creek | 11/23/2017 | 559.38 | | Voight 11-15H | Murphy Creek | 11/24/2017 | 536.39 | | Voight 11-15H | Murphy Creek | 11/25/2017 | 542.31 | | Voight 11-15H | Murphy Creek | 11/26/2017 | 536.47 | | Voight 11-15H | Murphy Creek | 11/27/2017 | 514.87 | | Voight 11-15H | Murphy Creek | 11/28/2017 | 508.53 | | - | Average -10/30/2017 thr | | 587.30 | Voight 11-15H ### NSPS OOOOa Applicability Determination for Storage tanks Voight 11-15H Well name 587.30 Average of first thirty days of production after re-frack, bbl/d 10/30/2017 Date of first production after re-frack 3 Number of oil tanks Date of LACT unit installation 1 Decline factor 11.08 Storage tank emissions - total 41288-41290 Tank numbers | Completion Name | Field | Date | Down Time Hours(1) | Actual Oil Production | |-----------------|--------------------|--------------------|--------------------|-----------------------| | KUKLA 34-34H | Murphy Creek | 9/23/2017 | 10 | 427.01 | | KUKLA 34-34H | Murphy Creek | 9/24/2017 | 0 | 468.11 | | KUKLA 34-34H | Murphy Creek | 9/25/2017 | 0 | 457.48 | | KUKLA 34-34H | Murphy Creek | 9/26/2017 | 0 | 482.70 | | KUKLA 34-34H | Murphy Creek | 9/27/2017 | 0 | 475.53 | | KUKLA 34-34H | Murphy Creek | 9/28/2017 | 0 | 325.51 | | KUKLA 34-34H | Murphy Creek | 9/29/2017 | 0 | 73.79 | | KUKLA 34-34H | Murphy Creek | 9/30/2017 | 0 | 47.20 | | KUKLA 34-34H | Murphy Creek | 10/1/2017 | 0 | 110.64 | | KUKLA 34-34H | Murphy Creek | 10/2/2017 | 0 | 601.56 | | KUKLA 34-34H | Murphy Creek | 10/3/2017 | 0 | 457.51 | | KUKLA 34-34H | Murphy Creek | 10/4/2017 | 0 | 650.40 | | KUKLA 34-34H | Murphy Creek | 10/5/2017 | 0 | 596.03 | | KUKLA 34-34H | Murphy Creek | 10/6/2017 | 0 | 534.02 | | KUKLA 34-34H | Murphy Creek | 10/7/2017 | 0 | 518.62 | | KUKLA 34-34H | Murphy Creek | 10/8/2017 | 0 | 489.99 | | KUKLA 34-34H | Murphy Creek | 10/9/2017 | 0 | 478.78 | | KUKLA 34-34H | Murphy Creek | 10/10/2017 | 10 | 472.53 | | KUKLA 34-34H | Murphy Creek | 10/11/2017 | 24 | 449.09 | | KUKLA 34-34H | Murphy Creek | 10/12/2017 | 23 | 441.75 | | KUKLA 34-34H | Murphy Creek | 10/13/2017 | 23 | 430.35 | | KUKLA 34-34H | Murphy Creek | 10/14/2017 | 23 | 416.86 | | KUKLA 34-34H | Murphy Creek | 10/15/2017 | 24 | 407.41 | | KUKLA 34-34H | Murphy Creek | 10/16/2017 | 24 | 399.66 | | KUKLA 34-34H | Murphy Creek | 10/17/2017 | 15 | 394.22 | | KUKLA 34-34H | Murphy Creek | 10/18/2017 | 0 | 381.09 | | KUKLA 34-34H | Murphy Creek | 10/19/2017 | 24 | 371.55 | | KUKLA 34-34H | Murphy Creek | 10/20/2017 | 19 | 363.22 | | KUKLA 34-34H | Murphy Creek | 10/21/2017 | 24 | 360.83 | | KUKLA 34-34H | Murphy Creek | 10/22/2017 | 12.00 | 170.54 | | | Average -9/23/2017 | through 10/22/2017 | | 408.47 | ### KUKLA 34-34H ### NSPS OOOOa Applicability Determination for Storage tanks KUKLA 34-34H Wall name 408.4656931 Average of first thirty days of production after re-frack, bbl/d 8/29/2017 Date of first production after re-frack 3 Number of oil tanks Date of LACT unit installation 1 Decline factor 7.71 Storage tank emissions - total 43061-43066 Tank numbers | Completion Name | Field | Date | | Down Time Hour | r5 | Actual Oil Production | |-----------------|------------------|------------------|-----------|----------------|----|-----------------------| | Tat USA 34 Pad | Anteloge | | 1/7/2018 | | 0 | 7294.30 | | Tat USA 34 Pad | Antelope | | 1/8/2018 | | 0 | 7609.21 | | Tat USA 34 Pad | Antelope | | 1/9/2018 | | 0 | 8126.15 | | Tat USA 34 Pad | Antelope | | 1/10/2018 | 1 | 0 | 2545.17 | | Tat USA 34 Pad | Antelope | | 1/11/2018 | 1 | 0 | 5513.17 | | Tat USA 34 Pad | Antelope | | 1/12/2018 | | 0 | 5476.94 | | Tat USA 34 Pad | Antelope | | 1/13/2018 | | 0 | 4931.47 | | Tat USA 34 Pad | Antelope | | 1/14/2018 | | 0 | 5253.53 | | Tat USA 34 Pad | Antelope | | 1/15/2018 | | 0 | 6416.67 | | Tat USA 34 Pad | Antelope | | 1/16/2018 | 1 | 0 | 8174.47 | | Tat USA 34 Pad | Antelope | | 1/17/2018 | 1 | 0 | 8763.01 | | Tat, USA 34 Pad | Antelope | | 1/18/2018 | | 0 | 8968.40 | |
Tat USA 34 Pad | Antelope | | 1/19/2018 | | 0 | 10108.93 | | Tat USA 34 Pad | Antelope | | 1/20/2018 | 1 | 0 | 9813.21 | | Tat USA 34 Pad | Antelope | | 1/21/2018 | | 0 | 9517.30 | | Tat USA 34 Pad | Antelope | | 1/22/2018 | | 0 | 8865.20 | | Tat USA 34 Pad | Antelope | | 1/23/2018 | | 0 | 8974.32 | | Tat USA 34 Pad | Antelope | | 1/24/2018 | 1 | 0 | 9093.51 | | Tat USA 34 Pad | Antelope | | 1/25/2018 | 1 | 0 | 7749.78 | | Tat USA 34 Pad | Antelope | | 1/26/2018 | | 0 | 6678.20 | | Tat USA 34 Pad | Antelope | | 1/27/2018 | 1 | 0 | 6246.89 | | Tat USA 34 Pad | Antelope | | 1/28/2018 | 1 | 0 | 6489.15 | | Tat USA 34 Pad | Antelope | | 1/29/2018 | 1 | 0 | 6430.02 | | Tat USA 34 Pad | Antelope | | 1/30/2018 | 1 | 0 | 4966.54 | | Tat USA 34 Pad | Antelope | | 1/31/2018 | 1 | 0 | 3788.29 | | Tat USA 34 Pad | Antelope | | 2/1/2018 | 1 | 0 | 3666.55 | | Tat USA 34 Pad | Antelope | | 2/2/2018 | | 0 | 3976.75 | | Tat USA 34 Pad | Antelope | | 2/3/2018 | 1 | 0 | 3474.36 | | Tat USA 34 Pad | Antelope | | 2/4/2018 | 1 | 0 | 3576.47 | | Tat USA 34 Pad | Antelope | | 2/5/2018 | 1 | 0 | 3164.43 | | | Average 1/9/2018 | through 2/7/2018 | | | | 6521.75 | ## LOCKWOOD USA 44-22TFH, TAT USA 34-22H, FORSMAN USA 44-22H, MURPHY USA 34-22TFH-2B, BEGOLA USA 34-22H NSPS OOOOa Applicability Determination for Storage tanks Tat USA 34 Pad Facility Name 6521.75 Average of first thirty days of production after re-frack, bbl/d 1/7/2018 Date of first production after re-frack 14 Number of oil tanks Date of LACT unit installation 0.5 Decline factor 52.83 Storage tank emissions - total 2807-2820 Tank numbers 2814, 2820 LACT permissive tank | Completion Name | Field | Date | Down Time Hours | Actual Oil Production | |-----------------|-------------------------|---------------|-----------------|------------------------------| | Moline Pad | Big Bend, Van Hook | 8/9/2017 | 0.00 | 3417.04235 | | Moline Pad | Big Bend, Van Hook | 8/10/2017 | 0.00 | 3745.325723 | | Moline Pad | Big Bend, Van Hook | 8/11/2017 | 0.00 | 3392.965457 | | Moline Pad | Big Bend, Van Hook | 8/12/2017 | 0.00 | 3249.993868 | | Moline Pad | Big Bend, Van Hook | 8/13/2017 | 0.00 | 3103.622113 | | Moline Pad | Big Bend, Van Hook | 8/14/2017 | 0.00 | 3210.933931 | | Moline Pad | Big Bend, Van Hook | 8/15/2017 | 0.00 | 2773.179883 | | Moline Pad | Big Bend, Van Hook | 8/16/2017 | 0.00 | 2919.943819 | | Moline Pad | Big Bend, Van Hook | 8/17/2017 | 0.00 | 2878.957975 | | Moline Pad | Big Bend, Van Hook | 8/18/2017 | 0.00 | 2845.613784 | | Moline Pad | Big Bend, Van Hook | 8/19/2017 | 0.00 | 3082.71441 | | Moline Pad | Big Bend, Van Hook | 8/20/2017 | 0.00 | 2652.797448 | | Moline Pad | Big Bend, Van Hook | 8/21/2017 | 0.00 | 2820.267173 | | Moline Pad | Big Bend, Van Hook | 8/22/2017 | 0.00 | 2381.442351 | | Moline Pad | Big Bend, Van Hook | 8/23/2017 | 0.00 | 2395.885721 | | Moline Pad | Big Bend, Van Hook | 8/24/2017 | 0.00 | 2566.079267 | | Moline Pad | Big Bend, Van Hook | 8/25/2017 | 0.00 | 2176.561645 | | Moline Pad | Big Bend, Van Hook | 8/26/2017 | 0.00 | 1081.683535 | | Moline Pad | Big Bend, Van Hook | 8/27/2017 | 0.00 | 1259.256965 | | Moline Pad | Big Bend, Van Hook | 8/28/2017 | 0.00 | 1152.717258 | | Moline Pad | Big Bend, Van Hook | 8/29/2017 | 0.00 | 661.5746259 | | Moline Pad | Big Bend, Van Hook | 8/30/2017 | 0.00 | 166.6666667 | | Moline Pad | Big Bend, Van Hook | 8/31/2017 | 0.00 | 1000.732391 | | Moline Pad | Big Bend, Van Hook | 9/1/2017 | 0.00 | 1176.540038 | | Moline Pad | Big Bend, Van Hook | 9/2/2017 | 0.00 | 1235.712234 | | Moline Pad | Big Bend, Van Hook | 9/3/2017 | 0.00 | 1367.017352 | | Moline Pad | Big Bend, Van Hook | 9/4/2017 | 0.00 | 2051.201123 | | Moline Pad | Big Bend, Van Hook | 9/5/2017 | 0.00 | 2725.296445 | | Moline Pad | Big Bend, Van Hook | 9/6/2017 | 0.00 | 2809.133172 | | Moline Pad | Big Bend, Van Hook | 9/7/2017 | 0.00 | 2772.026905 | | | Average - 8/9/2017 thre | ough 9/7/2017 | | 2302.429521 | | | | | | | MOLINE 14-32H, LACEY USA 11-5H ### NSPS OOOOa Applicability Determination for Storage tanks Moline Pad Facility name 2302.429521 Average of first thirty days of production 8/9/2017 Date of first production 10 Number of oil tanks 7/25/2017 Date of LACT unit installation 0.5 Decline factor 20.67 Storage tank emissions - total 2796-2805 Tank numbers 2799, 2800, 2804, 2805 LACT permissive tank ## Appendix F- Storage Tank Requirements Deviations | Facility | Inspection
Date | Issue | Repair | Repair Date | |-------------------------------|--------------------|--|--|-------------| | Clarks Creek USA
CTB | 12/17/2017 | leak on Water Tank
#1 | Water Tank #1 Thief
Hatch Cleaned | 12/17/2017 | | Golberg USA CTB | 3/9/2018 | leak on Water Tank
#3 | Water Tank #3 leak
fixed | 3/9/2018 | | Raymond USA
CTB | 5/16/2018 | Hatches leaking. | Gasket cleaned. | 5/16/2018 | | Mikkelsen USA | | Hatches leaking. | Flame Arrestor replaced | 5/29/2018 | | Eagle USA 41-
15H | 8/1/2018 | Tank 2313 thief hatch
leaking | Tank 2313 thief hatch
stuck. Hatch was reset
and cleaned | 8/1/2018 | | Marlin 14 CTB | 2/21/2018 | Thief Hatch Leak | leak fixed | 4/11/2018 | | Voight 11-15H | 3/26/2818 | Leak on load out of
tank # 41289 | leak fixed | 5/31/2018 | | Mary Hansen 14-
9H | 4/22/2018 | Production Line to
back of tank leaking | leak fixed | 5/29/2018 | | Mary Hansen 14-
9H | 4/22/2018 | Vent line leaking at threads | leak fixed | 5/29/2018 | | Mary Hansen 14-
9H | 5/14/2018 | Vent Line Leak at tank | leak fixed | 5/29/2018 | | Mary Hansen 14-
9H | 5/14/2018 | Production line
leaking at tank drain | leak fixed | 5/29/2018 | | William Kukla
CTB 7/13/202 | | Leaking thief hatch
on tank #43066 | Thief Hatch Internals replaced, Flame arrestor replaced. | 8/24/2018 | Appendix G – Fugitive Emissions Components Monitoring Surveys | No | Identification of
Each Affected
Facility | | Time | Survey End
Time | Ambient
Temperature
During Survey | Sky Conditions
During Survey | Maximum Wind
Speed During
Survey | Instrument
Used | 2nd Monitoring
Instrument
Used | Name of
Surveyor | Deviations From
Monitoring Plan
if none State
none | Number of Each
Component for
Which Fugitive
Emissions
Detected | Date of
Successful
Repair of
Fugitive
Emissions
Component | Type of
Instrument
Used to
Resurvey
Components
Not Repaired
During Original
Survey | |---------------------|--|------------|----------|--------------------|---|---------------------------------|--|---------------------------|--------------------------------------|---------------------|---|--|--|---| | 2017083046990
.0 | Oscar Stohler
Pad | 8/30/2017 | 12:30:00 | 13:04:00 | 79 | Sunny | 15 | FLIR / BK 2 -
4440657 | | (b) (6) | No | 0 | | | | 2017090136207 | Trotter Pad | 9/1/2017 | 09:03:00 | 10:05:00 | 71 | Overcast | 8 | FLIR / BK 2 -
4440657 | | | No | 0 | | | | 2017090841713 | Beck Pad | 9/8/2017 | 10:35:00 | 11:36:00 | 64 | Sunny | 5 | FLIR / BK 2 -
4440657 | | | No | 0 | | | | 201709111.0 | Moline-Lacey
Pad | 9/6/2017 | 11:30:00 | 12:30:00 | 65 | Sunny | 11.5 | FLIR / BK 1 -
44402088 | | | No | 0 | | | | 2017100210.0 | William Kukla
Pad | 10/2/2017 | 13:00:00 | 13:30:00 | 52 | Partly Cloudy | 7 | FLIR / BK 2 -
4440657 | | | No | 0 | | | | 201710033.0 | Delia USA pad | 10/2/2017 | 11:33:00 | 12:35:00 | 51 | Partly Cloudy | 9 | FLIR / BK 2 -
4440657 | | | No | 0 | | | | 2017100922.0 | Charchenko 14
Pad | 10/9/2017 | 15:18:00 | 15:18:00 | 51 | Sunny | 15 | FLIR / BK 2 -
4440657 | | | No | 0 | | | | 201711066.0 | Appledoom 14
Pad | 11/6/2017 | 12:45:00 | 12:59:00 | 20 | Overcast | 7 | FLIR / BK 1 -
4402088 | | | No | 0 | | | | 201711068.0 | Christensen
Pad | 11/6/2017 | 13:10:00 | 13:24:00 | 22 | Overcast | 7 | FLIR / BK 1 -
4402088 | | | No | 0 | | | | 201711075.0 | Tescher 11-27H | 11/7/2017 | 11:30:00 | 12:06:00 | 23 | Sunny | 10 | FLIR / BK 2 -
4440657 | | | No | 0 | | | | 2017110833.0 | Goldberg USA
Pad | 10/31/2017 | 10:00:00 | 10:45:00 | 28 | Sunny | 9.2 | FLIR / BK 1 -
4402088 | | | No | 0 | | | | 2017110834.0 | Raymond USA
Pad | 10/31/2017 | 10:30:00 | 10:46:00 | 28 | Sunny | 9.2 | FLIR / BK 1 -
4402088 | | | No | 0 | | | | 2017120114.0 | Trotter Pad | 12/1/2017 | 12:40:00 | 12:51:00 | 46 | Partly Cloudy | 15 | FLIR / BK 2 -
4440657 | | | No | 0 | | | | 201801141,0 | Stark Pad | 11/2/2017 | 09:00:00 | 10:00:00 | 26 | Overcast | 16 | FLIR / BK 1 -
4402088 | | | No | 0 | | | | 201801142.0 | Mikkelsen 11-
14H | 11/2/2017 | 10:02:00 | 16:03:00 | 26 | Overcast | 16 | FLIR / BK 1 -
4402088 | | | No | 0 | | | | 201801145.0 | Grady USA | 11/2/2017 | 16:39:00 | 16:40:00 | 28 | Overcast | 16 | FLIR / BK 1 -
4402088 | | | No | 0 | | | | 2018011910.0 | Chapman | 1/19/2018 | 13:07:00 | 15:12:00 | 41 | Overcast | 11 | FLIR / BK 2 -
4440657 | | | No | 0 | | | | 2018020712.0 | Pelton Pad | 2/7/2018 | 09:20:00 | 09:50:00 | -3 | Overcast | 7 | FLIR / BK 2 -
4440657 | | | No | 0 | | | | 2018020716.0 | Felix USA Pad | 2/7/2018 | 11:10:00 | 11:30:00 | 1 | Overcast | 7 | FLIR / BK 2 -
4440657 | | | No | 0 | | | | 2018020717.0 | Ringer Pad | 2/7/2018 | 12:00:00 | 12:20:00 | 5 | Overcast | 7 | FLIR / BK 2 -
4440657 | | | No | 0 | | | | 2018020724.0 | O'Neil 34 Pad | 2/7/2018 | 13:00:00 | 13:20:00 | 8 | Overcast | 7 | FLIR / BK 2 -
4440657 | | | No | 0 | | | |
2018020726.0 | O'Neil 24 Pad | 2/7/2018 | 13:20:00 | 14:38:00 | 9 | Overcast | 7 | FLIR / BK 2 -
4440657 | | | No | 0 | | | | 2018020728.0 | Veronica USA | 1/25/2018 | 10:30:00 | 12:30:00 | 28 | Overcast | 9 | FLIR / BK 2 -
4440657 | | | No | 0 | | | | No | Identification of
Each Affected
Facility | | Time | Survey End
Time | Ambient
Temperature
During Survey | Sky Conditions
During Survey | Maximum Wind
Speed During
Survey | Monitoring
Instrument
Used | 2nd Monitoring
Instrument
Used | Name of
Surveyor | Deviations From
Monitoring Plan
If none State
none | Type of
Component for
which Fugitive
Emissions
Detected | Number of Each
Component for
Which Fugitive
Emissions
Detected | Date of
Successful
Repair of
Fugitive
Emissions
Component | Type of
Instrument
Used to
Resurvey
Components
Not Repaired
During Original
Survey | |--------------|--|-----------|----------|--------------------|---|---------------------------------|--|----------------------------------|--------------------------------------|---------------------|---|---|--|--|---| | | 77777 | | 10:40:00 | 10:55:00 | -3 | Sunny | 5 | FLIR / BK 2 -
4440657 | | (b) (6) | No | | 0 | | | | 2018021315.0 | Trotter Pad | 2/13/2018 | 11.10:00 | 11:30:00 | 16 | Sunny | 18 | FLIR / BK 2 -
4440657 | | | No | | 0 | | | | 2018021317.0 | Oscar Stohler
Pad | 2/13/2018 | 11:30:00 | 11:49:00 | 21 | Sunny | 18 | FLIR / BK 2 -
4440657 | | | No | | 0 | | | | 201802218.0 | TAT USA 34
Pad | 2/21/2018 | 10:30:00 | 11:00:00 | 4 | Sunny | 7 | FLIR / BK 2 -
4440657 | | | No | | 0 | | | | 2018030830.0 | Fred Hansen
Pad | 3/8/2018 | 21:46:00 | 22:47:00 | 9 | Sunny | 3 | FLIR / BK 2 -
4440657 | | | No | | 0 | | | | 201804099.0 | Kukla 34 Pad | 4/9/2018 | 00:30:00 | 13:00:00 | 28 | Overcast | 9 | FLIR / BK 2 -
4440657 | | | No | | 0 | | | | 2018041125.0 | Tescher 11-27H
Pad | 4/11/2018 | 10:30:00 | 23:00:00 | 37 | Overcast | 14 | FLIR / BK 2 -
4440657 | | | No | | 0 | | | | 2018041214.0 | Martinez USA
24-8H | 4/12/2018 | 08:00:00 | 09:21:00 | 31 | Overcast | 8 | FLIR / BK 2 -
4440657 | | | No | | 0 | | | | 201804186.1 | Goldberg USA
Pad | 4/18/2018 | 10:15:00 | 10:55:00 | 37 | Overcast | 2 | FLIR / BK 2 -
4440657 | | | No | | 0 | | | | 2018052511.0 | Moline-Lacey
Pad | 5/25/2018 | 10:00:00 | 10:20:00 | 80.5 | Sunny | 19.2 | FLIR / Insight -
44401177 | | | No | | 0 | | | | 2018052913.0 | O'Neil 24 Pad | 5/29/2018 | 09:00:00 | 09:20:00 | 68 | Overcast | 8 | FLIR / BK 2 -
4440657 | | | No | | 0 | | | | 2018052915.0 | O'Neil 34 Pad | 5/29/2018 | 09:25:00 | 09:41:00 | 68 | Overcast | 8 | FLIR / BK 2 -
4440657 | | | No | | 0 | | | | 2018052919.0 | Stohler 41 Pad | 5/29/2018 | 10:45:00 | 11:10:00 | 69 | Overcast | 3 | FLIR / BK 2 -
4440657 | | | No | | 0 | | | | 2018052921.0 | Trotter Pad | 5/29/2018 | 11:30:00 | 11:45:00 | 72 | Overcast | 3 | FLIR / BK 2 -
4440657 | | | No | | 0 | | | | 201805301.0 | Pelton Pad | 5/30/2018 | 07:20:00 | 07:39:00 | 63 | Partly Cloudy | 8 | FLIR / BK 2 -
4440657 | | | No | | 0 | | | | 2018053118.0 | Appledoorn 14
Pad | 5/31/2018 | 09:45:00 | 09:55:00 | 74 | Partly Cloudy | 7 | FLIR / BK 2 -
4440657 | | | No | | 0 | | | | 2018053135.0 | Mary Hansen
Pad | 5/31/2018 | 14:00:00 | 14:09:00 | 65 | Overcast | 8 | FLIR / BK 2 -
4440657 | | | No | | 0 | | | | 2018053138.0 | Repp Trust Pad | 5/31/2018 | 14:30:00 | 14:43:00 | 67 | Overcast | 10 | FLIR / BK 2 -
4440657 | | | No | | 0 | | | | 2018060119.0 | Kempf Trust
Pad | 6/1/2018 | 10:15:00 | 10:30:00 | 69 | Partly Cloudy | 13 | FLIR / BK 2 -
4440657 | | | No | | 0 | | | | 201806018.0 | Repp Pad | 6/1/2018 | 07:40:00 | 07:55:00 | 63 | Partly Cloudy | 13 | FLIR / BK 2 -
4440657 | | | No | | 0 | | | | 2018060414.0 | LaDonna Klatt
Pad | 6/4/2018 | 11:40:00 | 11:54:00 | 80 | Sunny | 8 | FLIR / BK 2 -
4440657 | | | No | | 0 | | | | 2018060423.0 | Ringer Pad | 6/4/2018 | 13:00:00 | 13:22:00 | 84 | Partly Cloudy | | FLIR / BK 2 -
4440657 | | | No | | 0 | | | | 2018060522.0 | Beck Pad | 6/5/2018 | 11:40:00 | 11:45:00 | 75 | Partly Cloudy | 7 | FLIR / BK 2 -
4440657 | | | No | | 0 | | | | No | Identification of
Each Affected
Facility | | Time | Survey End
Time | Ambient
Temperature
During Survey | During Survey | Maximum Wind
Speed During
Survey | Instrument
Used | 2nd Monitoring
Instrument
Used | Name of
Surveyor | Deviations From
Monitoring Plan
If none State
none | Type of
Component for
which Fugitive
Emissions
Detected | Number of Each
Component for
Which Fugitive
Emissions
Detected | Successful
Repair of
Fugitive
Emissions
Component | Type of
Instrument
Used to
Resurvey
Components
Not Repaired
During Original
Survey | |---------------------|--|------------|----------|--------------------|---|---------------|--|--------------------------|--------------------------------------|---------------------|---|---|--|---|---| | 201806124.0 | Chapman | 6/12/2018 | 08:15:00 | 08:40:00 | 59 | Sunny | 16 | FLIR / BK 2 -
4440657 | | (b) (6) | No | | 0 | | | | 201807307.0 | Oscar Stohler
Pad | 7/30/2018 | 22:50:00 | 11:11:00 | 78 | Partly Cloudy | 7 | FLIR / BK 2 -
4440657 | | | No | | 0 | | | | 201807309.0 | Stohler 41 Pad | 7/30/2018 | 11:00:00 | 12:08:00 | 80 | Partly Cloudy | 7 | FLIR / BK 2 -
4440657 | | | No | | 0 | | | | 2017083138848
.0 | Charchenko 14
Pad | 8/31/2017 | 10:35:00 | 10:51:00 | 72 | Overcast | 4 | FLIR / BK 2 -
4440657 | | | No | Thief hatches or
other openings
on a controlled
storage vessel | , | 9/26/2017 | | | 201709112.0 | Kermit USA | 9/6/2017 | 14:30:00 | 16:00:00 | 73 | Sunny | 11.5 | FLIR / BK 2 -
4440657 | | | No | Thief hatches or other openings
on a controlled
storage vessel | 1 | 9/11/2017 | FLIR / Bakken 1
- 44402088 | | 201709112.0 | Kermit USA | 9/6/2017 | 14:30:00 | 16:00:00 | 73 | Sunny | 11.5 | FLIR / BK 2 -
4440657 | | | No | Thief hatches or
other openings
on a controlled
storage vessel | 1 | 9/11/2017 | FLIR / Bakken 1
- 44402088 | | 2017101015.0 | Wm & Agnes
Scott Pad | 10/10/2017 | 09:15:00 | 09:33:00 | 40 | Sunny | 10 | FLIR / BK 2 -
4440657 | | | No | Open-Ended
Lines | 1 | 11/30/2017 | | | 2017101015.0 | Wm & Agnes
Scott Pad | 10/10/2017 | 09:15:00 | 09:33:00 | 40 | Sunny | 10 | FLIR / BK 2 -
4440657 | | | No | Thief hatches or
other openings
on a controlled
storage vessel | 1 | 12/12/2017 | FLIR / Bakken 2
- 44400657 | | 2017101610.0 | Pearl Pad | 11/2/2017 | 11:05:00 | 22:30:00 | 41 | Sunny | 6.9 | FLIR / BK 1 -
4402088 | | | No | Flanges | 1 | 1/19/2018 | | | 201711069.0 | Voigt Pad | 11/6/2017 | 14:05:00 | 15:24:00 | 20 | Overcast | 10 | FLIR / BK 1 -
4402088 | | | No | Thief hatches or
other openings
on a controlled
storage vessel | 1 | 1/19/2018 | | | 201711069.0 | Voigt Pad | 11/6/2017 | 14:05:00 | 15:24:00 | 20 | Overcast | 10 | FLIR / BK 1 -
4402088 | | | No | Thief hatches or other openings
on a controlled
storage vessel | 1 | 1/19/2018 | | | 201711074.0 | Kempf Trust
Pad | 11/7/2017 | 11:00:00 | 11:25:00 | 20 | Sunny | 10 | FLIR / BK 2 -
4440657 | | | No | Thief hatches or other openings
on a controlled
storage vessel | 1 | 1/18/2018 | | | Facility Record
No | Identification of
Each Affected
Facility | Date of Survey | Survey Begin
Time | Survey End
Time | Ambient
Temperature
During Survey | Sky Conditions
During Survey | Maximum Wind
Speed During
Survey | Monitoring
Instrument
Used | 2nd Monitoring
Instrument
Used | Name of
Surveyor | Deviations From
Monitoring Plan
If none State
none | | Number of Each
Component for
Which Fugitive
Emissions
Detected | Date of
Successful
Repair of
Fugitive
Emissions
Component | Type of
Instrument
Used to
Resurvey
Components
Not Repaired
During Original
Survey | |-----------------------|--|----------------|----------------------|--------------------|---|---------------------------------|--|----------------------------------|--------------------------------------|---------------------|---|---|--|--|---| | 201711074.0 | Kempf Trust
Pad | 11/7/2017 | 11:00:00 | 11:25:00 | 20 | Sunny | 10 | FLIR / BK 2 -
4440657 | | (b) (6) | No | Thief hatches or
other
openings
on a controlled
storage vessel | 1 | 1/18/2018 | | | 2017112718.0 | Chapman | 11/27/2017 | 12:30:00 | 12:49:00 | 54 | Overcast | 15 | FLIR / BK 2 -
4440657 | | | No | Thief hatches or other openings on a controlled storage vessel | 1 | 1/19/2018 | FLIR / Bakken 2
- 44400657 | | 201801144.0 | Bingo Pad | 11/2/2017 | 16:19:00 | 16:23:00 | 26 | Partly Cloudy | 16 | FLIR / BK 1 -
4402088 | | | No | Thief hatches or other openings on a controlled storage vessel | 1 | 1/14/2018 | | | 201801144.0 | Bingo Pad | 11/2/2017 | 16:19:00 | 16:23:00 | 26 | Partly Cloudy | 16 | FLIR / BK 1 -
4402088 | | | No | Thief hatches or other openings on a controlled storage vessel | 1 | 1/14/2018 | | | 201801146.0 | Clarks Creek
USA Pad | 11/2/2017 | 16:48:00 | 16:52:00 | 28 | Overcast | 16 | FLIR / BK 1 -
4402088 | | | No | Thief hatches or
other openings
on a controlled
storage vessel | 1 | 1/14/2018 | | | 201801147.0 | Kermit USA | 11/2/2017 | 16:57:00 | 17:00:00 | 28 | Overcast | 16 | FLIR / BK 1 -
4402088 | | | No | | 0 | 1/14/2018 | | | 2018012611.0 | TAT USA 34
Pad | 1/25/2018 | 08:30:00 | 22:30:00 | 28 | Overcast | 9 | FLIR / BK 2 -
4440657 | | | No | Thief hatches or other openings on a controlled storage vessel | 1 | 2/21/2018 | FLIR / Bakken 2
- 44400657 | | 2018012611.0 | TAT USA 34
Pad | 1/25/2018 | 08:30:00 | 22:30:00 | 28 | Overcast | 9 | FLIR / BK 2 -
4440657 | | | No | Thief hatches or other openings on a controlled storage vessel | 1 | 2/21/2018 | | | 201802079.0 | Larry Repp 31
Pad | 2/7/2018 | 08:45:00 | 09:10:00 | -5 | Overcast | 7 | FLIR / BK 2 -
4440657 | | | No | Thief hatches or
other openings
on a controlled
storage vessel | 1 | 7/10/2018 | | | 201802079.0 | Larry Repp 31
Pad | 2/7/2018 | 08:45:00 | 09:10:00 | -5 | Overcast | 7 | FLIR / BK 2 -
4440657 | | | No | Thief hatches or other openings on a controlled storage vessel | 1 | 7/10/2018 | | | No | Identification of
Each Affected
Facility | | Time | Survey End
Time | Ambient
Temperature
During Survey | Sky Conditions
During Survey | Maximum Wind
Speed During
Survey | Instrument
Used | 2nd Monitoring
Instrument
Used | Name of
Surveyor | Deviations From
Monitoring Plan
If none State
none | Component for
which Fugitive
Emissions
Detected | Number of Each
Component for
Which Fugitive
Emissions
Detected | Successful
Repair of
Fugitive
Emissions
Component | Type of
Instrument
Used to
Resurvey
Components
Not Repaired
During Original
Survey | |--------------|--|-----------|----------|--------------------|---|---------------------------------|--|--------------------------|--------------------------------------|---------------------|---|---|--|---|---| | 201802079.0 | Larry Repp 31
Pad | 2/7/2018 | 08:45:00 | 09;10:00 | -5 | Overcast | 7 | FLIR / BK 2 -
4440657 | | (b) (6) | No | Thief hatches or
other openings
on a controlled
storage vessel | | 2/22/2018 | | | 2018020713.0 | Evelyn | 2/7/2018 | 10:00:00 | 10:32:00 | -1 | Overcast | 7 | FLIR / BK 2 -
4440657 | | | No | Thief hatches or other openings on a controlled storage vessel | 1 | 3/7/2018 | | | 2018020713.0 | Evelyn | 2/7/2018 | 10:00:00 | 10:32:00 | -1 | Overcast | 7 | FLIR / BK 2 -
4440657 | | | No | Thief hatches or
other openings
on a controlled
storage vessel | 1 | 3/7/2018 | | | 2018020910.0 | Mary Hansen
Pad | 2/9/2018 | 10:20:00 | 10:45:00 | -6 | Sunny | 5 | FLIR / BK 2 -
4440657 | | | No | Thief hatches or
other openings
on a controlled
storage vessel | 1 | 3/7/2018 | FLIR / Bakken 2
- 44400657 | | 2018021310.0 | Repp Trust Pad | 2/13/2018 | 10:00:00 | 10.32.00 | 13 | Sunny | 18 | FLIR / BK 2 -
4440657 | | | No | Thief hatches or
other openings
on a controlled
storage vessel | 1 | 8/10/2018 | FLIR / Bakken 1
- 44402088 | | 2018021310.0 | Repp Trust Pad | 2/13/2018 | 10:00:00 | 10:32:00 | 13 | Sunny | 18 | FLIR / BK 2 -
4440657 | | | No | Thief hatches or other openings on a controlled storage vessel | , | 7/10/2018 | | | 2018021313.0 | Repp Pad | 2/13/2018 | 10:30:00 | 10:55:00 | 16 | Sunny | 18 | FLIR / BK 2 -
4440657 | | | No | Thief hatches or other openings on a controlled storage vessel | 1 | 7/6/2018 | | | 2018021313.0 | Repp Pad | 2/13/2018 | 10:30:00 | 10:55:00 | 16 | Sunny | 18 | FLIR / BK 2 -
4440657 | | | No | Thief hatches or
other openings
on a controlled
storage vessel | 1 | 7/6/2018 | | | 201802237.0 | Marlin 14 Pad | 2/23/2018 | 11:30:00 | 12:24:00 | 14 | Sunny | 8 | FLIR / BK 2 -
4440657 | | | No | Thief hatches or
other openings
on a controlled
storage vessel | , | 4/11/2018 | FLIR / Bakken 2
- 44400657 | | 201802237.0 | Marlin 14 Pad | 2/23/2018 | 11:30:00 | 12:24:00 | 14 | Sunny | 8 | FLIR / BK 2 -
4440657 | | | No | Thief hatches or
other openings
on a controlled
storage vessel | 1 | 4/11/2018 | FLIR / Bakken 2
- 44400657 | | No | Identification of
Each Affected
Facility | | Survey Begin
Time | Survey End
Time | Ambient
Temperature
During Survey | Sky Conditions
During Survey | Maximum Wind
Speed During
Survey | Instrument
Used | 2nd Monitoring
Instrument
Used | Name of
Surveyor | | Type of
Component for
which Fugitive
Emissions
Detected | | Date of
Successful
Repair of
Fugitive
Emissions
Component | Type of
Instrument
Used to
Resurvey
Components
Not Repaired
During Original
Survey | |--------------|--|-----------|----------------------|--------------------|---|---------------------------------|--|--|--------------------------------------|---------------------|----|---|---|--|---| | 2018030113.0 | Marlin 44 Pad | 3/1/2018 | 11:48:00 | 12:50:00 | 31 | Sunny | 8 | FLIR / BK 2 -
4440657 | | (b) (6) | No | Connectors | 1 | 3/1/2018 | | | 2018031216.0 | Bethol CTB | 3/8/2018 | 20:45:00 | 22:00:00 | 14 | Sunny | 3 | FLIR / BK 2 -
4440657 | | | | Thief hatches or
other openings
on a controlled
storage vessel | 1 | 3/12/2018 | | | 2018031217.0 | Beck Pad | 3/12/2018 | 23:30:00 | 14:00:00 | 32 | Sunny | 4 | FLIR / BK 2 -
4440657 | | | | Thief hatches or other openings on a controlled storage vessel | 1 | 3/12/2018 | | | 2018031217.0 | Beck Pad | 3/12/2018 | 23:30:00 | 14:00:00 | 32 | Sunny | 4 | FLIR / BK 2 -
4440657 | | | | Thief hatches or
other openings
on a controlled
storage vessel | 1 | 3/12/2018 | | | 2018040339.0 | Delia USA pad | 4/3/2018 | 23:30:00 | 12:40:00 | 20 | Overcast | 9 | FLIR / BK 1 -
4402088 | | | No | Pressure Relief
Devices | 1 | 4/10/2018 | FLIR / Bakken 2
- 44400657 | | 2018040640.0 | Charchenko 14
Pad | 4/6/2018 | 12:15:00 | 13:00:00 | 14 | Sunny | 11 | FLIR / BK 2 -
4440657 | | | | Thief hatches or
other openings
on a controlled
storage vessel | 1 | 4/10/2018 | FLIR / Bakken : - 44400657 | | 2018040910.0 | Wm & Agnes
Scott Pad | 4/9/2018 | 13:15:00 | 14:15:00 | 28 | Overcast | 9 | FLIR / BK 2 -
4440657 | | | | Thief hatches or
other openings
on a controlled
storage vessel | 1 | 7/10/2018 | | | 2018051624.0 | Goldberg USA | 5/16/2018 | 09:02:00 | 12:00:00 | 76 | Sunny | 6.2 | FLIR / Insight - | | | No | | 0 | 5/16/2018 | | | 2018051624.0 | Pad
Goldberg USA | 5/16/2018 | 09:02:00 | 12:00:00 | 76 | Sunny | 6.2 | 44401177
FLIR / Insight - | | | No | | 0 | 5/22/2018 | | | 2018051624.0 | Goldberg USA
Pad | 5/16/2018 | 09:02:00 | 12:00:00 | 76 | Sunny | 6.2 | 44401177
FLIR / Insight -
44401177 | | | | Thief hatches or
other openings
on a controlled
storage vessel | 1 | 5/16/2018 | | | 2018051624.0 | Goldberg USA
Pad | 5/16/2018 | 09:02:00 | 12:00:00 | 76 | Sunny | 6.2 | FLIR / Insight -
44401177 | | | | Thief hatches or other openings on a controlled storage vessel | 1 | 6/13/2018 | | | No | Identification of
Each Affected
Facility | | Time | Survey End
Time | Ambient
Temperature
During Survey | Sky Conditions
During Survey | Maximum Wind
Speed During
Survey | Instrument
Used | 2nd Monitoring
Instrument
Used | Name of
Surveyor | Deviations From
Monitoring Plan
If none State
none | Type of
Component for
which Fugitive
Emissions
Detected | Number of Each
Component for
Which Fugitive
Emissions
Detected | Date of
Successful
Repair of
Fugitive
Emissions
Component | Type of
Instrument
Used to
Resurvey
Components
Not Repaired
During Original
Survey | |--------------|--|-----------|----------|--------------------|---|---------------------------------|--|------------------------------|--------------------------------------|---------------------|---|---
--|--|---| | 2018052510.0 | Raymond USA
Pad | 5/25/2018 | 08:55:00 | 09:50:00 | 77 | Sunny | 15.2 | FLIR / Insight -
44401177 | | (b) (6) | No | Thief hatches or
other openings
on a controlled
storage vessel | 1 | 5/26/2018 | | | 2018052510.0 | Raymond USA
Pad | 5/25/2018 | 08:55:00 | 09:50:00 | 77 | Sunny | 15.2 | FLIR / Insight -
44401177 | | | No | Thief hatches or
other openings
on a controlled
storage vessel | 1 | 6/13/2018 | | | 2018052510.0 | Raymond USA
Pad | 5/25/2018 | 08:55:00 | 09:50:00 | 77 | Sunny | 15.2 | FLIR / Insight -
44401177 | | | No | Thief hatches or other openings on a controlled storage vessel | 1 | 5/26/2018 | | | 2018052510.0 | Raymond USA
Pad | 5/25/2018 | 08:55:00 | 09:50:00 | 77 | Sunny | 15.2 | FLIR / Insight -
44401177 | | | No | Thief hatches or
other openings
on a controlled
storage vessel | 1 | 6/13/2018 | | | 2018052510.0 | Raymond USA
Pad | 5/25/2018 | 08:55:00 | 09:50:00 | 77 | Sunny | 15.2 | FLIR / Insight -
44401177 | | | No | | 0 | 5/26/2018 | | | 2018052510.0 | Raymond USA
Pad | 5/25/2018 | 08:55:00 | 09:50:00 | 77 | Sunny | 15.2 | FLIR / Insight -
44401177 | | | No | | 0 | 6/13/2018 | | | 2018052512.0 | Stark Pad | 5/25/2018 | 10:35:00 | 11:05:00 | 80.9 | Sunny | 18.7 | FLIR / Insight -
44401177 | | | No | Thief hatches or
other openings
on a controlled
storage vessel | 1 | 5/26/2018 | | | 2018052512.0 | Stark Pad | 5/25/2018 | 10:35:00 | 11:05:00 | 80.9 | Sunny | 18.7 | FLIR / Insight -
44401177 | | | No | Thief hatches or
other openings
on a controlled
storage vessel | 1 | 6/13/2018 | | | 2018052512.0 | Stark Pad | 5/25/2018 | 10:35:00 | 11:05:00 | 80.9 | Sunny | 18.7 | FLIR / Insight -
44401177 | | | No | Thief hatches or
other openings
on a controlled
storage vessel | 1 | 5/26/2018 | | | 2018052512.0 | Stark Pad | 5/25/2018 | 10:35:00 | 11:05:00 | 80.9 | Sunny | 18.7 | FLIR / Insight -
44401177 | | | No | Thief hatches or other openings
on a controlled
storage vessel | 1 | 6/13/2018 | | | 2018052513.0 | Pearl Pad | 5/25/2018 | 12:00:00 | 12:30:00 | 83 | Sunny | 14 | FLIR / Insight -
44401177 | | | No | Thief hatches or
other openings
on a controlled
storage vessel | 1 | 5/26/2018 | | | No | Identification of
Each Affected
Facility | | Time | Survey End
Time | Ambient
Temperature
During Survey | Sky Conditions
During Survey | Speed During
Survey | Instrument
Used | 2nd Monitoring
Instrument
Used | Name of
Surveyor | Deviations From
Monitoring Plan
If none State
none | Component for
which Fugitive
Emissions
Detected | Which Fugitive
Emissions
Detected | Successful
Repair of
Fugitive
Emissions
Component | Type of
Instrument
Used to
Resurvey
Components
Not Repaired
During Original
Survey | |--------------|--|-----------|----------|--------------------|---|---------------------------------|------------------------|------------------------------|--------------------------------------|---------------------|---|---|---|---|---| | 2018052513.0 | Pearl Pad | 5/25/2018 | 12:00:00 | 12:30:00 | 83 | Sunny | 14 | FLIR / Insight -
44401177 | | (b) (6) | No | Thief hatches or
other openings
on a controlled
storage vessel | 1 | 6/22/2018 | | | 2018052513.0 | Pearl Pad | 5/25/2018 | 12:00:00 | 12:30:00 | 83 | Sunny | 14 | FLIR / Insight -
44401177 | | | No | Thief hatches or other openings
on a controlled
storage vessel | 1 | 5/26/2018 | | | 2018052513.0 | Pearl Pad | 5/25/2018 | 12:00:00 | 12:30:00 | 83 | Sunny | 14 | FLIR / Insight -
44401177 | | | No | Thief hatches or
other openings
on a controlled
storage vessel | 1 | 6/22/2018 | | | 2018052514.2 | Clarks Creek
USA Pad | 5/25/2018 | 13:00:00 | 13:25:00 | 83.3 | Sunny | 11.8 | FLIR / Insight -
44401177 | | | No | Thief hatches or
other openings
on a controlled
storage vessel | 1 | 5/26/2018 | | | 2018052514 2 | Clarks Creek
USA Pad | 5/25/2018 | 13:00:00 | 13:25:00 | 83.3 | Sunny | 11.8 | FLIR / Insight -
44401177 | | | No | Thief hatches or
other openings
on a controlled
storage vessel | 1 | 6/22/2018 | | | 201805259.1 | Grady USA | 5/25/2018 | 12:35:00 | 12:00:00 | 84.5 | Sunny | 12.7 | FLIR / Insight -
44401177 | | | No | Thief hatches or other openings on a controlled storage vessel | 1 | 5/26/2018 | | | 201805259.1 | Grady USA | 5/25/2018 | 12:35:00 | 12:00:00 | 84.5 | Sunny | 12.7 | FLIR / Insight -
44401177 | | | No | Thief hatches or other openings on a controlled storage vessel | 1 | 6/22/2018 | | | 201805259.1 | Grady USA | 5/25/2018 | 12:35:00 | 12:00:00 | 84.5 | Sunny | 12.7 | FLIR / Insight -
44401177 | | | No | Thief hatches or other openings on a controlled storage vessel | 1 | 5/26/2018 | | | 201805259.1 | Grady USA | 5/25/2018 | 12:35:00 | 12:00:00 | 84.5 | Sunny | 12.7 | FLIR / Insight -
44401177 | | | No | Thief hatches or other openings on a controlled storage vessel | 1 | 6/22/2018 | | | No | Identification of
Each Affected
Facility | | Time | Survey End
Time | Ambient
Temperature
During Survey | Sky Conditions
During Survey | Speed During
Survey | Instrument
Used | 2nd Monitoring
Instrument
Used | Name of
Surveyor | Deviations From
Monitoring Plan
If none State
none | Component for
which Fugitive
Emissions
Detected | Number of Each
Component for
Which Fugitive
Emissions
Detected | Successful
Repair of
Fugitive
Emissions
Component | Type of
Instrument
Used to
Resurvey
Components
Not Repaired
During Original
Survey | |--------------|--|-----------|----------|--------------------|---|---------------------------------|------------------------|------------------------------|--------------------------------------|---------------------|---|---|--|---|---| | 2018052515.0 | Mikkelsen 11-
14H | 5/25/2018 | 11:15:00 | 11:55:00 | 82.4 | Sunny | 15.2 | FLIR / Insight -
44401177 | | (b) (6) | No | Thief hatches or
other openings
on a controlled
storage vessel | 1 | 5/26/2018 | | | 2018052515.0 | Mikkelsen 11-
14H | 5/25/2018 | 11:15:00 | 11:55:00 | 82.4 | Sunny | 15.2 | FLIR / Insight -
44401177 | | | No | Thief hatches or
other openings
on a controlled
storage vessel | 1 | 6/22/2018 | | | 2018052515.0 | Mikkelsen 11-
14H | 5/25/2018 | 11:15:00 | 11:55:00 | 82.4 | Sunny | 15.2 | FLIR / Insight -
44401177 | | | No | | 0 | 5/26/2018 | | | 2018052516.0 | Kermit USA | 5/25/2018 | 14:10:00 | 14:45:00 | 87.5 | Sunny | 15.2 | FLIR / insight -
44401177 | | | No | Thief hatches or
other openings
on a controlled
storage vessel | 1 | 5/26/2018 | | | 2018052516.0 | Kermit USA | 5/25/2018 | 14:10:00 | 14:45:00 | 87.5 | Sunny | 15.2 | FLIR / Insight -
44401177 | | | No | Thief hatches or
other openings
on a controlled
storage vessel | 1 | 6/27/2018 | | | 2018052516.0 | Kermit USA | 5/25/2018 | 14:10:00 | 14:45:00 | 87.5 | Sunny | 15.2 | FLIR / Insight -
44401177 | | | No | | 0 | 5/26/2018 | | | 2018052516.0 | Kermit USA | 5/25/2018 | 14:10:00 | 14:45:00 | 87.5 | Sunny | 15.2 | FLIR / Insight -
44401177 | | | No | | 0 | 6/27/2018 | | | 2018052517.0 | Veronica USA | 5/25/2018 | 15:00:00 | 15:50:00 | 86.6 | Sunny | 11.8 | FLIR / Insight -
44401177 | | | No | | 0 | 5/26/2018 | | | 2018052517.0 | Veronica USA | 5/25/2018 | 15:00:00 | 15:50:00 | 86.6 | Sunny | 11.8 | FLIR / Insight -
44401177 | | | No | | 0 | 6/22/2018 | | | 2018052517.0 | Veronica USA | 5/25/2018 | 15:00:00 | 15:50:00 | 86.6 | Sunny | 11.8 | FLIR / Insight -
44401177 | | | No | Thief hatches or
other openings
on a controlled
storage vessel | 1 | 5/26/2018 | | | 2018052517.0 | Veronica USA | 5/25/2018 | 15:00:00 | 15:50:00 | 86.6 | Sunny | 11.8 | FLIR / Insight -
44401177 | | | No | Thief hatches or
other openings
on a controlled
storage vessel | 1 | 6/22/2018 | | | 2018052517.0 | Veronica USA | 5/25/2018 | 15:00:00 | 15:50:00 | 86.6 | Sunny | 11.8 | FLIR / Insight -
44401177 | | | No | Valves | 1 | 5/26/2018 | | | 2018052517.0 | Veronica USA | 5/25/2018 | 15:00:00 | 15:50:00 | 86.6 | Sunny | 11.8 | FLIR / Insight -
44401177 | | | No | Valves | 1 | 6/22/2018 | | | 2018052518.0 | TAT USA 34
Pad | 5/25/2018 | 15:35:00 | 12:40:00 | 88.3 | Sunny | 14.3 | FLIR / Insight -
44401177 | | | No | Thief hatches or
other openings
on a controlled
storage vessel | 1 | 5/26/2018 | | | Facility Record
No | Identification of
Each Affected
Facility | Date of Survey | Survey Begin
Time | Survey End
Time | Ambient
Temperature
During Survey | Sky Conditions
During Survey | Maximum Wind
Speed During
Survey | Instrument
Used | 2nd Monitoring
Instrument
Used | Name of
Surveyor |
Deviations From
Monitoring Plan
If none State
none | Component for
which Fugitive
Emissions
Detected | Number of Each
Component for
Which Fugitive
Emissions
Detected | Successful
Repair of
Fugitive
Emissions
Component | Type of
Instrument
Used to
Resurvey
Components
Not Repaired
During Original
Survey | |-----------------------|--|----------------|----------------------|--------------------|---|---------------------------------|--|------------------------------|--------------------------------------|---------------------|---|---|--|---|---| | 2018052518.0 | TAT USA 34
Pad | 5/25/2018 | 15:35:00 | 12:40:00 | 88,3 | Sunny | 14.3 | FLIR / Insight -
44401177 | | (b) (6) | No | Thief hatches or
other openings
on a controlled
storage vessel | | 6/22/2018 | | | 2018052518.0 | TAT USA 34
Pad | 5/25/2018 | 15:35:00 | 12:40:00 | 88.3 | Sunny | 14.3 | FLIR / Insight -
44401177 | | | No | Thief hatches or
other openings
on a controlled
storage vessel | 1 | 5/26/2018 | | | 2018052518.0 | TAT USA 34
Pad | 5/25/2018 | 15:35:00 | 12:40:00 | 88.3 | Sunny | 14.3 | FLIR / Insight -
44401177 | | | No | Thief hatches or
other openings
on a controlled
storage vessel | 1 | 6/22/2018 | | | 2018052519.0 | Eagle USA Pad | 5/25/2018 | 17:05:00 | 17:25:00 | 86.2 | Sunny | 10.9 | FLIR / Insight -
44401177 | | | No | Thief hatches or
other openings
on a controlled
storage vessel | 1 | 5/26/2018 | | | 2018052519.0 | Eagle USA Pad | 5/25/2018 | 17:05:00 | 17:25:00 | 86.2 | Sunny | 10.9 | FLIR / Insight -
44401177 | | | No | Thief hatches or
other openings
on a controlled
storage vessel | | 6/27/2018 | | | 2018052519.0 | Eagle USA Pad | 5/25/2018 | 17:05:00 | 17:25:00 | 86.2 | Sunny | 10.9 | FLIR / Insight -
44401177 | | | No | Thief hatches or
other openings
on a controlled
storage vessel | | 5/26/2018 | | | 2018052519.0 | Eagle USA Pad | 5/25/2018 | 17:05:00 | 17:25:00 | 86.2 | Sunny | 10.9 | FLIR / Insight -
44401177 | | | No | Thief hatches or
other openings
on a controlled
storage vessel | | 6/27/2018 | | | 2018052917.0 | Oscar Stohler
Pad | 5/29/2018 | 10.10:00 | 10:27:00 | 68 | Overcast | 8 | FLIR / BK 2 -
4440657 | | | No | Thief hatches or
other openings
on a controlled
storage vessel | | 6/13/2018 | | | 2018052917.0 | Oscar Stohler
Pad | 5/29/2018 | 10:10:00 | 10:27:00 | 68 | Overcast | 8 | FLIR / BK 2 -
4440657 | | | No | Thief hatches or
other openings
on a controlled
storage vessel | | 5/29/2018 | | | No | Identification of
Each Affected
Facility | | Time | Survey End
Time | Ambient
Temperature
During Survey | Sky Conditions
During Survey | Maximum Wind
Speed During
Survey | Instrument
Used | 2nd Monitoring
Instrument
Used | Name of
Surveyor | Deviations From
Monitoring Plan
If none State
none | Component for
which Fugitive
Emissions
Detected | Which Fugitive
Emissions
Detected | Successful
Repair of
Fugitive
Emissions
Component | Type of
Instrument
Used to
Resurvey
Components
Not Repaired
During Original
Survey | |--------------|--|-----------|----------|--------------------|---|---------------------------------|--|--------------------------|--------------------------------------|---------------------|---|---|---|---|---| | 2018053039 0 | Voigt Pad | 5/30/2018 | 11:00:00 | 11:24.00 | 70 | Partly Cloudy | 8 | FLIR / BK 2 -
4440657 | | (b) (6) | No | Thief hatches or
other openings
on a controlled
storage vessel | 1 | 5/30/2018 | | | 2018053039.0 | Voigt Pad | 5/30/2018 | 11:00:00 | 11:24:00 | 70 | Partly Cloudy | 8 | FLIR / BK 2 -
4440657 | | | No | Thief hatches or
other openings
on a controlled
storage vessel | 1 | 6/15/2018 | | | 2018053054 0 | Bethol CTB | 5/30/2018 | 14:20:00 | 14:06:00 | 75 | Partly Cloudy | 8 | FLIR / BK 2 -
4440657 | | | No | Thief hatches or
other openings
on a controlled
storage vessel | 1 | 5/31/2018 | | | 2018053054.0 | Bethol CTB | 5/30/2018 | 14:20:00 | 14:06:00 | 75 | Partly Cloudy | 8 | FLIR / BK 2 -
4440657 | | | No | Thief hatches or
other openings
on a controlled
storage vessel | 1 | 6/15/2018 | FLIR / Bakken 2
- 44400657 | | 2018053054.0 | Bethol CTB | 5/30/2018 | 14:20:00 | 14:06:00 | 75 | Partly Cloudy | 8 | FLIR / BK 2 -
4440657 | | | No | Thief hatches or
other openings
on a controlled
storage vessel | 1 | 6/5/2018 | | | 2018053054.0 | Bethol CTB | 5/30/2018 | 14:20:00 | 14:06:00 | 75 | Partly Cloudy | 8 | FLIR / BK 2 -
4440657 | | | No | Thief hatches or other openings
on a controlled
storage vessel | 1 | 6/15/2018 | FLIR / Bakken 2
- 44400657 | | 2018053060.0 | Chapman | 5/30/2018 | 09.40.00 | 22.44.00 | 63 | Partly Cloudy | 8 | FLIR / BK 2 -
4440657 | | | No | Thief hatches or other openings on a controlled storage vessel | 1 | 5/30/2018 | | | 2018053060 0 | Chapman | 5/30/2018 | 09:40:00 | 22:44.00 | 63 | Partly Cloudy | 8 | FLIR / BK 2 -
4440657 | | | No | Thief hatches or other openings
on a controlled
storage vessel | 1 | 6/13/2018 | | | 2018053136.0 | Larry Repp 31
Pad | 5/31/2018 | 14:20:00 | 14:30:00 | 67 | Overcast | 10 | FLIR / BK 2 -
4440657 | | | No | Thief hatches or other openings on a controlled storage vessel | 1 | 5/31/2018 | | | No | Identification of
Each Affected
Facility | | Time | Survey End
Time | Ambient
Temperature
During Survey | Sky Conditions
During Survey | Maximum Wind
Speed During
Survey | Instrument
Used | 2nd Monitoring
Instrument
Used | Name of
Surveyor | Deviations From
Monitoring Plan
If none State
none | Component for
which Fugitive
Emissions
Detected | Number of Each
Component for
Which Fugitive
Emissions
Detected | Successful
Repair of
Fugitive
Emissions
Component | Type of
Instrument
Used to
Resurvey
Components
Not Repaired
During Original
Survey | |--------------|--|-----------|----------|--------------------|---|---------------------------------|--|--------------------------|--------------------------------------|---------------------|---|---|--|---|---| | 2018053136.0 | Larry Repp 31
Pad | 5/31/2018 | 14:20:00 | 14:30:00 | 67 | Overcast | 10 | FLIR / BK 2 -
4440657 | | (b) (6) | No | Thief hatches or
other openings
on a controlled
storage vessel | 1 | 8/24/2018 | FLIR / Bakken 1
- 44402088 | | 2018053140.0 | Quill Pad | 5/31/2018 | 14:47:00 | 15:05:00 | 67 | Overcast | 8 | FLIR / BK 2 -
4440657 | | | | Thief hatches or other openings on a controlled storage vessel | 1 | 5/31/2018 | | | 2018053140.0 | Quill Pad | 5/31/2018 | 14:47:00 | 15:05:00 | 67 | Overcast | 8 | FLIR / BK 2 -
4440657 | | | | Thief hatches or
other openings
on a controlled
storage vessel | 1 | 7/10/2018 | | | 2018053140.0 | Quill Pad | 5/31/2018 | 14 47:00 | 15:05:00 | 67 | Overcast | 8 | FLIR / BK 2 -
4440657 | | | | Thief hatches or other openings on a controlled storage vessel | 1 | 5/31/2018 | | | 2018053140.0 | Quill Pad | 5/31/2018 | 14:47:00 | 15;05:00 | 67 | Overcast | 8 | FLIR / BK 2 -
4440657 | | | | Thief hatches or other openings on a controlled storage vessel | 1 | 7/30/2018 | FLIR / Bakken 2
- 44400657 | | 201806019.0 | Christensen
Pad | 6/1/2018 | 07:55:00 | 08:14:00 | 64 | Partly Cloudy | 11 | FLIR / BK 2 -
4440657 | | | No | Thief hatches or
other openings
on a controlled
storage vessel | 1 | 6/1/2018 | | | 201806019.0 | Christensen
Pad | 6/1/2018 | 07:55:00 | 08:14:00 | 64 | Partly Cloudy | 11 | FLIR / BK 2 -
4440657 | | | | Thief hatches or other openings on a controlled storage vessel | 1 | 7/6/2018 | FLIR / Bakken 2
- 44400657 | | 2018060111.0 | Darcy / Evelyn-
Patrick Pad | 6/1/2018 | 08:20:00 | 08:47:00 | 64 | Overcast | 11 | FLIR / BK 2 -
4440657 | | | No | Thief hatches or other openings on a controlled storage vessel | 1 | 6/1/2018 | | | 2018060111.0 | Darcy / Evelyn-
Patrick Pad | 6/1/2018 | 08:20:00 | 08:47:00 | 64 | Overcast | 11 | FLIR / BK 2 -
4440657 | | | | Thief hatches or
other openings
on a controlled
storage vessel | 1 | 7/6/2018 | FLIR / Bakken 2
- 44400657 | | No | Identification of
Each Affected
Facility | | Time | Survey End
Time | Ambient
Temperature
During Survey | Sky Conditions
During Survey | Maximum Wind
Speed During
Survey | Instrument
Used | 2nd
Monitoring
Instrument
Used | Name of
Surveyor | Deviations From
Monitoring Plan
If none State
none | Component for
which Fugitive
Emissions
Detected | Which Fugitive
Emissions
Detected | Successful
Repair of
Fugitive
Emissions
Component | Type of
Instrument
Used to
Resurvey
Components
Not Repaired
During Original
Survey | |--------------|--|----------|----------|--------------------|---|---------------------------------|--|--------------------------|--------------------------------------|---------------------|---|---|---|---|---| | 2018060111.0 | Darcy / Evelyn-
Patrick Pad | 6/1/2018 | 08:20:00 | 08:47:00 | 64 | Overcast | 11 | FLIR / BK 2 -
4440657 | | (b) (6) | No | Thief hatches or
other openings
on a controlled
storage vessel | 1 | 6/1/2018 | | | 2018060111.0 | Darcy / Evelyn-
Patrick Pad | 6/1/2018 | 08:20:00 | 08.47:00 | 64 | Overcast | 11 | FLIR / BK 2 -
4440657 | | | | Thief hatches or
other openings
on a controlled
storage vessel | 1 | 7/10/2018 | FLIR / Bakken 2
- 44400657 | | 2018060515.0 | Marlin 14 Pad | 6/5/2018 | 09:50:00 | 10:23:00 | 72 | Partly Cloudy | 7 | FLIR / BK 2 -
4440657 | | | No | Thief hatches or
other openings
on a controlled
storage vessel | 1 | 6/6/2018 | | | 2018060515.0 | Marlin 14 Pad | 6/5/2018 | 09:50:00 | 10:23:00 | 72 | Partly Cloudy | 7 | FLIR / BK 2 -
4440657 | | | No | Thief hatches or
other openings
on a controlled
storage vessel | 1 | 6/15/2018 | FLIR / Bakken :
- 44400657 | | 2018060515.0 | Marlin 14 Pad | 6/5/2018 | 09:50:00 | 10:23:00 | 72 | Partly Cloudy | 7 | FLIR / BK 2 -
4440657 | | | No | Thief hatches or
other openings
on a controlled
storage vessel | 1 | 6/6/2018 | | | 2018060515.0 | Marlin 14 Pad | 6/5/2018 | 09.50.00 | 10:23:00 | 72 | Partly Cloudy | 7 | FLIR / BK 2 -
4440657 | | | No | Thief hatches or
other openings
on a controlled
storage vessel | 1 | 6/15/2018 | FLIR / Bakken :
- 44400657 | | 2018060523.0 | Delia USA pad | 6/5/2018 | 12:00:00 | 12:37:00 | 75 | Partly Cloudy | 7 | FLIR / BK 2 -
4440657 | | | No | Thief hatches or
other openings
on a controlled
storage vessel | 1 | 6/6/2018 | | | 2018060523.0 | Delia USA pad | 6/5/2018 | 12:00:00 | 12:37:00 | 75 | Partly Cloudy | 7 | FLIR / BK 2 -
4440657 | | | No | Thief hatches or
other openings
on a controlled
storage vessel | 4 | 6/15/2018 | FLIR / Bakken ;
- 44400657 | | 2018060523.0 | Delia USA pad | 6/5/2018 | 12:00:00 | 12:37:00 | 75 | Partly Cloudy | 7 | FLIR / BK 2 -
4440657 | | | No | Thief hatches or
other openings
on a controlled
storage vessel | 1 | 6/6/2018 | | | No | Each Affected
Facility | Date of Survey | Time | Survey End
Time | Ambient
Temperature
During Survey | Sky Conditions
During Survey | Maximum Wind
Speed During
Survey | Instrument
Used | 2nd Monitoring
Instrument
Used | Name of
Surveyor | Deviations From
Monitoring Plan
If none State
none | | | Successful
Repair of
Fugitive
Emissions
Component | Type of
Instrument
Used to
Resurvey
Components
Not Repaired
During Original
Survey | |--------------|---------------------------------|----------------|----------|--------------------|---|---------------------------------|--|------------------------------|--------------------------------------|---------------------|---|---|---|---|---| | 2018060523.0 | Delia USA pad | 6/5/2018 | 12:00:00 | 12:37:00 | 75 | Partly Cloudy | 7 | FLIR / BK 2 -
4440657 | | (b) (6) | No | Thief hatches or
other openings
on a controlled
storage vessel | 1 | 6/15/2018 | FLIR / Bakken 2
- 44400657 | | 2018062820.0 | Myrmidon-
Hunts Along
Pad | 6/28/2018 | 11:47:00 | 12:57:00 | 82.1 | Partly Cloudy | 6.4 | FLIR / Insight -
44401177 | | | No | Thief hatches or other openings on a controlled storage vessel | 1 | 6/28/2018 | | | 201807028.0 | Sherman Pad | 6/28/2018 | 10:06:00 | 10:30:00 | 81.7 | Partly Cloudy | 7.8 | FLIR / Insight -
44401177 | | | No | Thief hatches or
other openings
on a controlled
storage vessel | 1 | 6/28/2018 | | | 201807028.0 | Sherman Pad | 6/28/2018 | 10:06:00 | 10:30:00 | 81.7 | Partly Cloudy | 7.8 | FLIR / Insight -
44401177 | | | No | Thief hatches or
other openings
on a controlled
storage vessel | 1 | 7/31/2018 | | | 201807028.0 | Sherman Pad | 6/28/2018 | 10:06:00 | 10:30:00 | 81.7 | Partly Cloudy | 7.8 | FLIR / Insight -
44401177 | | | No | | 0 | 6/28/2018 | | | 201807028.0 | Sherman Pad | 6/28/2018 | 10:06:00 | 10:30:00 | 81.7 | Partly Cloudy | 7.8 | FLIR / Insight -
44401177 | | | No | | 0 | 7/31/2018 | | | 2018073122.0 | Bear Den Pad | 7/31/2018 | 08:34:00 | 11:10:00 | 73 | Sunny | 14.9 | FLIR / Insight -
44401177 | | | No | Thief hatches or
other openings
on a controlled
storage vessel | 1 | 7/31/2018 | | | 2018073122.0 | Bear Den Pad | 7/31/2018 | 08:34:00 | 11:10:00 | 73 | Sunny | 14.9 | FLIR / Insight -
44401177 | | | No | Thief hatches or
other openings
on a controlled
storage vessel | 1 | 7/31/2018 | | | 2018073122.0 | Bear Den Pad | 7/31/2018 | 08:34:00 | 11:10:00 | 73 | Sunny | 14.9 | FLIR / Insight -
44401177 | | | No | Thief hatches or
other openings
on a controlled
storage vessel | 1 | 7/31/2018 | | | 2018073122.0 | Bear Den Pad | 7/31/2018 | 08:34:00 | 11:10:00 | 73 | Sunny | 14.9 | FLIR / Insight -
44401177 | | | No | Thief hatches or
other openings
on a controlled
storage vessel | 1 | 7/31/2018 | | | 2018073122.0 | Bear Den Pad | 7/31/2018 | 08:34:00 | 11:10:00 | 73 | Sunny | 14.9 | FLIR / Insight -
44401177 | | | No | | 0 | 7/31/2018 | | | Facility Record | Identification of | Date of Survey | Survey Begin | Survey End | Ambient | Sky Conditions | Maximum Wind | Monitoring | 2nd Monitoring | Name of | Deviations From | Type of | Number of Each | Date of | Type of | |-----------------|---------------------------|----------------|--------------|------------|------------------------------|----------------|------------------------|------------------------------|--------------------|----------|-----------------|-----------------------------|---|------------------------------------|--| | No. | Each Affected
Facility | | Time | Time | Temperature
During Survey | During Survey | Speed During
Survey | Instrument
Used | Instrument
Used | Surveyor | | which Fugitive
Emissions | Which Fugitive
Emissions
Detected | Repair of
Fugitive
Emissions | Instrument
Used to
Resurvey
Components
Not Repaired
During Original
Survey | | 2018073122.0 | Bear Den Pad | 7/31/2018 | 08:34:00 | 11:10:00 | 73 | Sunny | 14.9 | FLIR / Insight -
44401177 | | (b) (6) | No | | 0 | 7/31/2018 | | | Appendix H- Certification signed by the qualified professional engineer for each closed vent | |--| | system routing to a control device. | Appendix H- Certification signed by the qualified professional engineer for each closed vent system routing to a control device. | |--| # Bear Den Facility Tank Battery Vent Line Design & Capacity Assessment | | (b) (6) | | |-------|---|--| | TO: | Marathon Oil | | | FROM: | Tim Archuleta | | | CC: | Nate Mascarenas, Kendra Meeker | | | DATE: | June 29, 2017 | | | RE: | Bear Den Facility- Vent Line Design and Capacity Assessment | | The US EPA finalized "Standards of Performance for Crude Oil and Natural Gas Facilities for which Construction, Modification or Reconstruction Commenced After September 18, 2015" on June 3, 2016. This regulation has requirements for certifying the design of closed vent systems. An assessment of the closed vent must be performed to determine it is of sufficient design and capacity to ensure that all emissions from storage vessels are routed to the control device or process and have it certified by a qualified professional engineer. This regulation is 40 CFR 40 Subpart 0000a, referred to as the Quad Oa regulation. ## Certification for 40 CFR 60.5411a(d): "I certify that the closed vent system design and capacity assessment was prepared under my direction or supervision. I further certify that the closed vent system design and capacity assessment was conducted and this report was prepared pursuant to the requirements of subpart Quad Oa of 40 CFR part 60. Based on my professional knowledge and experience, and inquiry of personnel involved in the assessment, the certification submitted herein is true, accurate, and complete. I am aware that there are penalties for knowingly submitting false information." ##
Purpose: Evaluate the new Bear Den Facility tank battery vent line design to ensure that the Enardo ES-660 thief hatches, which are set at 16 oz/in^2 will not open during normal operating flow rate scenarios. The normal flow path for the vapor from the storage tanks will be to one flare where the off gas will be combusted to meet Quad Oa regulations. ### Results: Based on the 3D model of the vent system and predicted vapor flow rates, Halker Consulting evaluated the pipe routing from the storage tanks to the flare and calculated the expected pressure drop in the system during the Marathon Oil specified maximum predicted vapor flow rates. The pressure at the outlet of the flare was set at local atmospheric pressure of approximately 13.5 psia. Pressure drop through the piping system from the furthest storage tank to the flare was calculated and found to have a backpressure on the tank battery of 0.4 psig (6.1 oz/in²g). During normal operating conditions, $6.1 \text{ oz/in}^2\text{g}$ pressure should be the highest pressure that the tanks will see and is 40% of the of $16 \text{ oz/in}^2\text{g}$ set pressure of the thief hatch. A flare tip pressure drop of 0.0 oz/in² was used and was based on information provided by Steffes Flare systems for the Air Assist Model 4. The flame arrestor pressure drop used was 0.9 oz/in² and is based on the Enardo sizing program for a 4" Series 8 inline flame arrestor. The total gas flow rate to the flare used was 241 mscfd (771 lb/hr), and is based on a condensate flash factor and gas composition provided by Marathon Oil. The gas composition used was the average composition from the February 2017 Clarks Creek (MM) Analysis Summary. Credit was taken for the VRT thereby reducing the amount of flashed gas that was calculated using the provided flash gas factor. Using the same calculation methodology, the total gas flow rate can be increased to 380 MSCFD (1216 lb/hr) and stay below the opening pressure of an Enardo ES-660 thief hatch (14.4 oz/in 2). This is approximately 1.57 times the normal operating flow. Standard pressure drop "K" value for fittings and valves per Crane Technical Paper 410 were used. The value used for the absolute roughness of steel was 0.00015 ft. *Attached are the tabulated results of the hydraulic calculations #### Disclaimer: This assessment meets the certification requirements of 40 CFR part 60 subpart 0000a. It is the responsibility of *Marathon Oil* to comply with the reporting requirements of this regulation. This evaluation does not consider the destructive efficiency of the controlled device or components upstream of the tank vent design. **Attachment 1- Hydraulic Calculations** | W- 1 | | | nydraulic C | alculations | | | | | | | | | | | | | |--------------------|---------------------------------|--|-------------------------------|-----------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|---------------------|--------------------|--------------------|-------------|-------------|---------| | Client
Project: | Warsthon Or
TVCS West II | | | Notes -> | | | | | | | | | | | | | | Location | Bear Den Fa | | | Peter - | | | | | | | | | | | | | | Jinit:
Proj it | 18039-18 | | Ain Pres | 13.5 | also. | Mar | Outlet | ко | Before | | 3 | 2 | 1 | | | | | ByChke | | | Pres Uni | | fare to | KO | of KO | - | KO Drum | toris | Brita | tanks | tank | | | | | ReviDate: | 1.3563 | 28-Jun-17 | - 8 | EGMENT ID | G | H | 1 | 1 | K | L | M | N | 0 | | | | | Pressure | | egment ID or known
Segment ID or known | | pain | 13.50 | - | h . | 10000 | - | 7 0 | 11000 | n. | 1000 | - | Let Co | | | Data | | essure Up or Downs | | pena
DIT | 4 | | 4 | 1 | 4 | - 1 | 0 | - 6 | 4 | | | 1 | | ric Method | (Henry I'm | SWIP-Duller, S-E. M. C | rdingg & C.Sri | silvens) | 15000 | | 100 | 13.55 | CARLY | 1000 | F 1986-8. | 5670 | - 1 | 5.00 | | | | to Say Vich | Pipe Rough | Highest In. M. | -BIR S-Edv | | 0.00015 | 8,00015 | 0.00018 | 0,00013 | 0.00015 | 0.00015 | 0.000n5 | 0.00018 | 0.00015 | | | 155 | | Ppe | | Size or Internal Di | ande | Inches | 4.000 | 4,000 | 6.000 | 36.000 | 6.000 | 4.000 | 4.000 | 4.000 | 4.000 | | | | | | | 0; std. elc.) Blank # | ID, given abo | DVR . | 1.0 | 980
84.0 | slid
1.0 | #00
#10 | 1.0 | 912
358.5 | 15.0 | #14
15.0 | 910
15.0 | | 2000 | | | Eev- | Straight pipe
Inlet & Outlie | angn_ | krist | - | 1.0 | 94.0 | - 10 | 8.0 | 1.0 | 208.5 | 12.0 | 10.0 | 15.0 | | | 1 | | tion | OR | - | Outer | | - 44 | - 44 | 44 | | | 100 | - 44 | | | -39 | 565 | G-1 | | | Difference
90's | (Outlet - Intel)
Std (R/D=1), three | Difference | - | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1 | | - | | | 1 | Short Radius (R/I | D+1), fg6/will | foed | 10000 | | 100000 | 10.00 | THE STREET | 0.500 | 7000 | PT-D | | 0.00 | 200.00 | 117 | | IX Method | 971 | Standard (R/D+1 | 5), all types
1 weld (90 c | for annia) | | 1 | 1 | - | | | - | | No. | 1 300 | | - | | | | Mared | 2 weig (45 c | feg angle) | | 2 | 1000 | 1000 | | | | | 100 | | | 1. | | | Characher | Chatha Book | 3 weld (30 c | | | 1000 | 2500 | 300 | 12 900 | STOP | | 1000 | 200 | 200 | | 133 | | | Choose type | Plug Valve Branch
Plug Valve Straigh | i Thru | | | | 3 2000 | | - | - | | 200 | - | 0.221 | 1 | - | | | 45% | Short Radius (R/
Standard (R/D=1 | O=1), all type | 1 | | | 1 | 1-00 | 52.3 | | 3 | -1000 | 10000 | N 5-195 | | | | bows | 45'1 | Standard (R/D+1
Milered, 1 weld, 4 | 5, at types
5 dec arrie | | | - | 100 | - | - | | - | | | | 1 | | | | | Mared 2 weld 2 | 2.5 deg arga | | 1-5-2 | | 2 2 | | 11000 | | | 0 | 100 | W. | | | | | Choose hos | | | | | The sale | | - | 1000 | -3-5-5 | | | artered. | - | ATIL | 1 | | | 1671 | Close Return (R)
Close Return (R) | D+1), Redive | (Ced) | 11 2 13 | | | | 200 | - | | | - | 1 | 100 | | | | 180 | Close Return (R)
Standard (R/C+1 | 5), all tipes | | | - | 1.50 | | | - | | 1000 | 10-11-1 | | _ | | | | Ubad | Standard (R/D+1)
Long-radius (R/D | | ed l | Tre-series | | | 1 | 2000 | | | | A COL | - | 125 | | | | Mr. | Standard (R/D+1) |), flanged or v | | 55,135 | 1200 | | 7 | - | 3 | | -0.54 | 1 | Will Street | | 2 | | ees | Flow - | Stub-in type brand
Threaded | ch | | | | 7 | 10000 | 1000 | - | - | 1 | | 250 | 1 | 0.00 | | | Bry. | Flanged or Welde | | | No. | 150 | 1 | 2 3 | 1000 | 3 | 1 | 1 | 2 - JE | 1000 | 5.000 | | | | Tee | Stub-in type brand
Full line size, But | ch | | | | 1000000 | 200 | 4.000 | - | - | 100000 | 1135.3 | 200 | | 136 | | | Gale, Ball or | Reduced from Bir | | | | | | 1 | | | | | | - | | - | | | Plug | Reduced trim, Be | | | | | | 12000 | 5=57 | | 0 7 | | 0-25 | 8.40 | 1000 | 100 | | aves. | Globe, eland | lard
(a or Y-type) or Disc | degree interes | - | - | - | - | - | - | | - | 100 | - | - | 7 | - | | 244 | Butterfy | | | | | | 1000 | 200 | | | - | | 775 | | 1000 | 150 | | | | Lift - min vel (N) | | | | | - | 1200 | | | 1 | | 10000 | | 5300 | | | | Check | Swing - min vei ()
Tilling-disk | tia)+ epipen | # Batilut | | | 1000 | - | 200 | 1 | | | 100 | | 7.00 | 1 | | | Pige Entranc | e Exit 7(0×none, 1×4 | rit. 2-ed.) | + both) | | 100 | 1 | 10000 | 2 | | | 1 | 1.5 | 2500 | description | | | Dear | Swape to Diam
Oritice Diam | emeter (al end) | _ | 'n | | 1200 | 4,000 | - | - | 6.000 | - | - | - | - | - | - | | DP DP | Initial Swage | ton Diameter | | h | A CHES | 2000 | 11 | | 1.500 | | | 5500 | 15-20- | 25.5 | 100 | 25 | | | | ure Drop (Equip, etc | | 26 | 0.000 | 0.060 | | - | 1 | 5.00 | | 50.55 | - | 100 | | | | | Valve Cv (No | Pressure Drop (Eq.
in-flashing liquid or)
is Flow Resistance | NO. OF I | grotper S
X factor | 1.00 | | 1 | - | 1 | | | - | | FLYS | 1 | 1 | | | | | | | 1000 | 7.22 | 3320 | 1000 | (200- | 750 | | 35000 | 2000 | 100 | | | | bud | Flow (provide | e mass OR volume | 0858) | gpm
gpm | | | - | 1 | - | | | - | 1100 | | | - | | | Density | | | 10/13 | (- C - V - E - | 10-20-0 | - | 1500 | 1000 | | 75- | | | | V 10-10 | 200 | | 2.04 | Viscosity
Surface Ten | sion (2 phase only) | | eP
dyne/cm | - | - | - | - | | | - | | | | - | - | | | Flow Rate | | | D/W | 771.26 | 771.25 | 771.26 | 771.26 | 771.26 | 771.28 | 771.26 | 514,17 | 257.09 | 1000 | 25.3 | | | | Density DR 1 | W 241 | Density | 6/13 | 90.13 | 90.17 | 70.11 | 46.14 | 29.14 | 70.14 | 20.11 | 29.14 | 29.14 | 3000 | 15.57 | | | Vilipo/ | | | Z | | 25.14
0.954 | 29.14 | 29.14
0.954 | 2914
0304 | 0.994 | 29.14
0.994 | 29.14
0.964 | 0.954 | 0.994 | 1200 | | | | | | | Teng | F | 115.0 | 115.0 | -115.0 | 115.0 | 115.0 | 115.0 | 115.0 | 115.0 | 115.0 | | 1 | | | pe ktana | Vapor Viscos
Diameter | LPy | | E2 | 0.010
4.025 | 0.010
4.025 | 6.065 | 9010
36.250 | 0.010
6.065 | 4.006 | 0.010
4.026 | 4.026 | 4.026 | | | | | P / Holdug | Calculation M | efforts | | | Duk/Hugh | DukHigh | DixHigh | DukHugh | DukHugh | DUATUR | DuNHugh | DukHigh | DukHugh | | | | | | Flow rate
Flow rate | | | b/v | 0.0 | 0.0 | 0.0 | 00 | 0.0 | 0.0 | 0 00 | 0.0 | 00 | | | | | iquid | Density | | 4 | gon
bit3 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | 1 | | 120 | Viscosty | in Character | | cP | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | | | Flow Rate | sion (2 phase only) | | dyneicm | 771 | 771 | 771 | 771 | 771 | 771 | 9.00
771 | 514 | 0.00
257 | | | 1 | | /apor | Vapor Viscos | | | cP. | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | | | | | | | erage Pressure | | paig | 0.00 | 0.05 | 0.11 | 0.11 | 0.51 | 0.25 | 0.39 | 0.39 | 0.40 | | | | | _ | Vapor Density
Bulk Density | | | 6/13 | 0.0642 | 0.0644 | 0.0647 | 0.0647 | 0.0647 | 0.0653 | 0.0660 | 0.0660 | 0.0661 | | _ | | | | Pipe Flow A: | | | 62 | 0.0864 | 0.0684 | 0.2006 | 6.7771 | 0.2006 | 0.0884 | 0.0684 | 0.0884 | 0.0884 | | | | | low | Bulk
Velocity | | | filter | 37.77 | 37.62 | 16.51 | 0.49 | 15.51 | 37.09 | 36.72 | 24.47 | 12.23 | | | | | Parsi- | Erosional Ve
Average Vec | locity if solids press | 1 | f/sec
cP | 394.79
0.010 | 994,02 | 393.25
0.010 | 0.010 | 393.21 | 391.24
0.010 | 389.25 | 389.14 | 389.09 | | | | | | Elevation Chi | ings (Outlet-Inlet) | | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0,0 | 0.0 | 0.0 | 0.0 | | | | | reters. | Reynolds No
Friction Fact | rober (NRs)
ort (Colebrook & V | Minter. | | 1.18E+05
0.0197 | 1.18E+05
0.0197 | 7.86E+04
0.0302 | 1.35E+04
0.0286 | 7.86E+04
0.0202 | 1.18E+05
0.0197 | 1,18E+05
0,019/7 | 7.89E+04
0.0258 | 3.95E+04
0.0234 | | | - | | | K (straight p | pt) | | | 0.06 | 4:92 | 0.04 | 0.08 | 0.04 | 21.01 | 88.0 | 0.93 | 1.05 | | | | | - 1 | K (fillings + v | alves) | office) | | 0.00 | 0.55 | 0.57 | 8.00 | 1.02 | 6.72
0.31 | 0.18 | 0.18 | 0.61 | | | | | riction | | + eid + swages + o
rous Flow Resistan | | Nr. | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | 1 | | | Total K | 1 | | | 0.06 | 5.47 | 1.65 | 0.08 | 1.06 | 28.04 | 1.06 | 1,11 | 2.09 | | | | | | Velocity Hear
Equivalent le | d (Average Density
noth | DATE: | 11/10 | 1.0 | 22 00
93.4 | 4.24 | 8.0 | 4.24
26.4 | 21.38
478.4 | 20.95
18.1 | 9.50 | 2.32 | | | | | | | essure before CV | | psig | 0.0006 | 0.1045 | 0.1077 | 0.1077 | 0.10969 | 0.382 | 0.392 | 0.397 | 0.400 | e. | 6.1 | or to 2 | | | | stream Control Valv | e DP | peg | | 1 | 1 | - | 0.10309 | 0.362 | 0,302 | 0.357 | 0.00 | | ., | or.in2 | | | Segment Up | stream pressure | - | psig | 0.00 | 0.10 | 0.11 | 0.11 | 0.11 | 0.38 | 0.29 | 0.40 | 0.40 | | | | | OTAL | | Pressure Drop
ure Drop (Equip &) | Mod | psi | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | 1 | | | Friction Pres | sure Dirap | -U(M) | ps ps | 0.00 | 0.06 | 0.00 | 0.00 | 0.00 | 9.27 | 0.01 | 0.00 | 0.00 | | | | | 11 | Acceleration | Factor | | | 1.45E-00 | 1,450-03 | 2.805-04 | 2.456-07 | 2.80E-04 | 1.416-03 | 1.36E-03 | 6.14E-04 | 1,535-04 | | | | | | Fotal System | Pressure Drop
whatream Pies , by | elbra C.V. | 28 G | 0.00 | 0.00 | 6.00 | 8.51 | 0.00 | 0.27 | 8.36 | 0.00 | 8.49 | | | | | | Secret 25 | | | 275 | | | | | | | k. | | | | | 1 | | | Available Do | whateum Control (
or Control Valve | Notice DIP | 26 | 0.0000 | 0.0006 | 0.1045 | 0.1077 | 0.1077 | 0.1017 | 6.3821 | 0.3923 | 0.3971 | | | | Beck Pad CTB ## BECK FACILITY TANK BATTERY VENT LINE DESIGN AND CAPACITY ASSESSMENT | | addition. | |---|---| | Marathon Oil | (b) (6) | | John Van Pelt | A S | | Tim Archuleta, Nate Mascarenas, Kendra Meeker | | | June 12, 2017 | 1 | | BECK Facility- Vent Line Design and Capacity Assessment | | | | John Van Pelt Tim Archuleta, Nate Mascarenas, Kendra Meeker June 12, 2017 | The US EPA finalized "Standards of Performance for Crude Oil and Natural Gas Facilities for which Construction, Modification or Reconstruction Commenced After September 18, 2015" on June 3, 2016. This regulation has requirements for certifying the design of closed vent systems. An assessment of the closed vent must be performed to determine it is of sufficient design and capacity to ensure that all emissions from storage vessels are routed to the control device or process and have it certified by a qualified professional engineer. This regulation is 40 CFR 40 Subpart 0000a, referred to as the Quad Oa regulation. # Certification for 40 CFR 60.5411a(d): "I certify that the closed vent system design and capacity assessment was prepared under my direction or supervision. I further certify that the closed vent system design and capacity assessment was conducted and this report was prepared pursuant to the requirements of subpart Quad Oa of 40 CFR part 60. Based on my professional knowledge and experience, and inquiry of personnel involved in the assessment, the certification submitted herein is true, accurate, and complete. I am aware that there are penalties for knowingly submitting false information." ## Purpose: Evaluate the new Beck facility tank battery vent line design to ensure that the Enardo ES-660 thief hatches, which are set at 16 oz/in² will not open during normal operating flow rate scenarios. The normal flow path for the vapor from the storage tanks will be to one flare where the off gas will be combusted to meet Quad Oa regulations. ## Results: Based on the 3D model of the vent system and predicted vapor flow rates, Halker Consulting evaluated the pipe routing from the storage tanks to the flare and calculated the expected pressure drop in the system during the Marathon Oil specified maximum predicted vapor flow rates. The pressure at the outlet of the flare was set at local atmospheric pressure of approximately 13.46 psia. Pressure drop through the piping system from the furthest storage tank to the flare was calculated and found to have a backpressure on the tank battery of 0.24 psig (3.9 oz/in²g). During normal operating conditions the 3.9 oz/in²g pressure should be the highest pressure that the tanks will see and is 24% of the of 16 oz/in²g set pressure of the thief hatch. A flare tip pressure drop of 0.0 oz/in² was used and was based on information provided by Steffes Flare systems for the Air Assist Model 4. The flame arrestor pressure drop used was 0.72 oz/in² and is based on the Enardo sizing program for a 4" Series 8 inline flame arrestor. The total gas flow rate to the flare used was 213 mscfd (683 lb/hr), and is based on a condensate flash factor and gas composition provided by Marathon Oil. The gas composition used was the average composition from the February 2017 Clarks Creek (MM) Analysis Summary. Credit was taken for the VRT thereby reducing the amount of flashed gas that was calculated using the provided flash gas factor. Using the same calculation methodology, the total gas flow rate can be increased to 436 MSCFD (1396 lb/hr) and stay below the opening pressure of an Enardo ES-660 thief hatch (14.4 oz/in²). This is approximately 2.04 times the normal operating flow. Standard pressure drop "K" value for fittings and valves per Crane Technical Paper 410 were used. The value used for the absolute roughness of steel was 0.00015 ft. *Attached are the tabulated results of the hydraulic calculations #### Disclaimer: This assessment meets the certification requirements of 40 CFR part 60 subpart 0000a. It is the responsibility of *Marathon Oil* to comply with the reporting requirements of this regulation. This evaluation does not consider the destructive efficiency of the controlled device or components upstream of the tank vent design. # **Attachment 1- Hydraulic Calculations** | | | | Hydraulic C | alculations | | | | | | | | | | | |-------------------|--------------------------------|--|---|----------------|---|-------------------------|-------------------|-------------------------|--------------------|---|-------------------|-------------|--------|--------| | Client | Marathon Oil | | queaux C | Basis / | 100 | | | | | | | | | | | Project | TVCS Went L | ine | | Notes → | 7 | | . 5 | | 3 | 2 | 1 | ex segment. | | | | Location:
Unit | BECK Fedit | у | | | | 4" | 6" | | 6" | 4" | 4 | | | | | Proj #: | 16039-11 | | Am Pres | 13.46 | atm | Atlai | Outlet | ко | Before | full flow | Halfof | | | | | ByChkid | . JAP | | Pres Uni | | fare to | KO | ofKQ | | KO Drum | to KO | tanks | | | | | RevDate: | | 6-Jun-17 | | EGMENT ID | G | H | | J | K | L | M | | | | | Pressure | | egment ID or kn
a Segment ID or | | psia | 13.46 | . 0 | ħ | 1 | - | R | 1 | | | | | Data | is known pro | essure Up or Do | wnstream (U | or Dy? | d | d | d | d | d | d | d | | T | 7.5 | | Fric Method | (bitameg 2 ort | dark-Outlier, 3-L-W. | F-Barge Britt, Sele | (thereal) | | | | | | | | | | | | Holdup Mich | Pipe Rough | 2 =Hughmurk,3HL-I
ness | 44-050 3-03 | tun) | 0.00015 | 0.00015 | 0.80015 | 0.00015 | 0.00015 | 0.00015 | 0.00015 | | | | | Pipe | Nominal Lin | e Size or Interna | of Diameter | Inches | 4 000 | 4 000 | 6.000 | 24.600 | 6.000 | 4 000 | 4.000 | 7 | 100000 | 200 | | | Schedule (4 | 0, std, etc.) Blan | k iff.D. given | above | 611 | 64.2 | 8M | 8.0 | 7.8 | 81d
222.2 | 157.5 | | - | | | Elev | Straight pipe
Inlet & Outle | i minger | inlet | 1 | 1 | 1000 | | | | **** | 191.0 | | | | | aton | OR | (Outlet - Inlet) | Outlet | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 11-12- | | | | | Difference
90's | Std (R/D=1), th | | - | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | - | 1 | | | | - | Short Radius (I | R/D=1), figd/ | velded | | 100000 | 100 | 101/2004 | | La Contraction | | 100 | | | | 3K Method | 90's | Standard (R/D | *1.5), all type
1.1 wald (90 | deg angle) | | 3 | | | 100 | - | 2 | | / b a | | | | | Misred | | deg angle) | | | | | | The second | 1747 | | | | | | F | Plug Valve Bran | 3 weld (30 | deg angle) | | | | 100 | 1000 | | | - | | | | | Choose type | Plug Value Strain | ight Thru | | | | - | _ | 10000 | | 1 | | | | | | 45'8 | Plug Value Strai
Short Radius (R.O-
Standard (R.O- | RO-1), all ty | pes | | | | | 100 | | | 191 | | | | Elbows | 45's | Standard (R/D-
Mitered, 1 weld | +1.5), all type | | | - | | | | 1 | | | | | | | | Mitered, 2 weld | 1, 22.5 deg an | gle | | | | | | | BRIDGE SE | | | | | | Choose type | Ball Valve Full F
Close Return (| Port | | | | - | | | | | | | | | | 180's | Close Return d | R/D+1), findA | weided | | | - | | - | | | | 1 | | | | 180 | Standard (R/D) | =1.5), all type | \$ | | 15000 | | | | | | | | | | - | Used | Standard (R/D) Long-redius (R | | | | | | | | | | | | | | | an | Standard (R/D | =1), flanged o | | 76.00 | - | | | | 2 | 2 | 10000 | 10000 | | | Tees | Elbow
 Stub-in type bro
Threaded | | | | | | | | | | | 1-1-1 | | | | Flow-
thru | Flanged or Wei | ided | | | 1 | | | | 1 | 8 | | | | | | Tee | Stub-in type bro | anch | | | | | | | | | | | | | | Gate, Ball | Full line size, B
Reduced trim, | Retain 0 G | | | | 1 | | | | | | | | | | or Plug | Reduced trim. | | | | | | 11000 | | | 10.00 | | 1000 | 1000 | | | Globe, stand | | Seekeese is | | 100000000000000000000000000000000000000 | | | | | 2702 | | | | | | Valves | Butterfy | le or Y-type) or D | saphragm (o | am type) | - | | | | | | | | | | | | | Lit - min vel (f | 1/s)= 35/(den | s (b/ft3)*.5 | | 17.0 | | | 7.00 | 2757 | S | 10000 | | | | | Check | Swing - min vel | i (ft/s)= 40/(de | ens (b/ft3)^.5 | | | | | | 7000 | 1 | - | | | | | Pipe Entran | Titing-disk
ce/Exit7(0=none, | 1=entr. 2=ex | i(3-both) | 70000 | | 1 | | 2 | No. of the last | 1 | | | | | | Swage to Di | ameter (at end) | | | 12/10/2009 | | 4.000 | | | 6.000 | | | | | | Other | Orifice Diam | tom Diameter | | in | | | | | | 0.00 | 110 | | _ | | | | Other Press | ure Drop (Equip. | | pai
& fluid | 0.000 | 0.045 | | | | 100 | | | | | | | | Pressure Drop (
in-fashing liquid | | gombs* 5 | | | | | | | | | | | | | Macellaneo | us Flow Resists | ince | K factor | | | | | | 111111111111111111111111111111111111111 | | | | | | | Flow (provid | e mass OR volum | me basis) | B/hr | | | | | | | | | | | | Liquid | Density | | | gpm
B/R3 | | | | | | | | - | | | | | Viscosity | | | cP | | | | | 100 | 7750 | 100000 | | | | | _ | Surface Ten
Flow Rate | sion (2 phase or | nlyj | dynalom | 682.78 | 682.78 | 682.78 | 682.78 | 682.78 | 682.78 | 341.39 | - | | | | | Density OR I | TASWA | Density | B/h/ | 002.70 | | 100000 | | | | | | | | | Vapor | | | MW | | 29.14 | 29.14
0.994
115.0 | 29.14 | 29.14
0.994
115.0 | 29.14
0.994 | 29.14 | 29.14 | | | | | | | | Z
Temp | F | 0.994 | 115.0 | 0 994 | 115.0 | 115.0 | 0 994
115.0 | 0.994 | | | | | | Vapor Visco | sity | L. C. | cP | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | | | | | | al Diameter
p Calculation | Llathoda | | in | 4.026
Duk/Hugh | 4.028
DukHugh | 6 065
Dul/Hugh | 23.250
Duk'Hugh | 6 065
DukHugh | 4.026
Dul/Hugh | 4.026
Duk/Hugh | | | | | UF / HORSE | Flow rate | 10000 | | lb/hr | O | 0 | 0 | 0 | 0 | O | 0 | | | | | | Flow rate | | | gpm
b/83 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | Liquid | Density
Viscosity | | | P#3 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | | | Surface Ten | sion (2 phase or | mlyt | dyne/cm | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | | Manage | Flow Rate | | | ib/hr | 683
0,010 | 683 | 683
0.010 | 683 | 683 | 683 | 0.010 | | | | | Vapor | Vapor Visco
Segment Av | sity
erage Pressure | | cP
paig | 0.00 | 0.04 | 0.08 | 0.010 | 0.09 | 0.010 | 0.010 | | | | | | Vapor Densi | | * | 8/83 | | 0.0842 | 0.0844 | 0.0644 | 0.0844 | 0.0647 | 0.0650 | | | | | | Bulk Density | | , | 6/83 | 0.08 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.07 | | | | | | Pipe Flow A | | | 82 | | 0.0884 | 0.2006 | 2.9483 | 0.2006 | 0.0584 | 0.0884 | | | | | Flow | Bulk Velocity
Erosional W | slocity if solids p | resent | f/sec | | 33.43 | 14.69
394.16 | 394.14 | 14.68
394.13 | 33.17 | 16.49
392.11 | | | | | Para- | Average Visi | cosity | | cP | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 1 | | | | meters | Bernston Ch | ange (Outlet-Inle
umber (NRe) | nt) | | 0.0
1.05E+05 | 1.05E+05 | 0.0
6.96E+04 | 0.0
1.82E+04 | 6.98E+04 | 0.0
1.05E+05 | 5.24E+04 | | | | | THE STA | Friction Fact | orf (Colebrook | & White) | | 0.0200 | 0.0200 | 0.0206 | 0.0267 | 0.0206 | 0.0200 | 0.0222 | | 1 | | | | K (straight p | (pe) | | | 0.00 | 3.82 | 0.32 | 0.11 | 0.32 | 13.23 | 10.43 | | | - | | | K (Stings +) | raives)
+ exit + swages | + oritor) | | 0.00 | 0.00 | 1.04 | 0.00 | 1.02 | 0.31 | 5.97
0.61 | | | | | Friction | K (Macellan | eous Flow Resi | istance + Vah | in CV) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | | | Total K | d (Average Deni | sity Pasies | # Buid | 17.48 | 17.37 | 3.35 | 0.11 | 335 | 15.93 | 17,01 | - | | | | | Equivalent is | | and manual | K RUIG | 0.0 | 81.1 | 36.8 | 8.0 | 32.6 | 267.5 | 256.8 | | | | | | | ressure before (| CV | psig | - | 0.0822 | 0.0845 | 0.0845 | 0.00548 | 0.20898 | 0.242 | · cs | 3.9 | oz.in2 | | | Available Up | stream Control | Valve DP | pe | | | - | | Inc. or other wife | - | | | | | | TOTAL | | Pressure Drop | | peig | | 0.00 | 0.00 | 0.08 | 0.00 | 0.00 | 0.00 | | | | | TOTAL. | Other Press | ure Drop (Equip | | pe | 0.00 | 0.04 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | | | Friction Pres | sure Drop | | pei | 0.00 | 0.04 | 0.00 | 0.00 | 0.00 | 0.12 | 0.03 | | | | | | Acceleration
Total System | Factor
n Pressure Drop | | pei | 1.15E-03
0.00 | 1.15E-03
0.08 | 2.21E-04
0.00 | 1.02E-06 | 2.21E-04
0.00 | 1.13E-03
0.12 | 2.79E-04
0.03 | | | | | | Segment De | winsteam Pres | , before C.V. | psig | 41 | 0.00 | 0.08 | 0.06 | 0.06 | 0.09 | 0.21 | | | | | | Available Do | wnsteam Cont
er Control Valve | rôl Valve DP | psi | | 0.0000 | 0.0822 | 0.0845 | 0.0845 | 0.0865 | 0.2090 | | | | | | Error Status | or Consol Asias | | psig | OK | OK | OK | OK | CK | CK | OK OK | | | | | | ASSESSED NAMED IN | | | | - | | | | | | | | - | | # GRADY FACILITY TANK BATTERY VENT LINE DESIGN AND CAPACITY ASSESSMENT | | | THE PARTY OF P | |-------|--|--| | TO: | Marathon Oil | (b) (6) | | FROM: | Tim Archuleta | Ž. | | CC: | Nate Mascarenas, Kendra Meeker | | | DATE: | July 21, 2017 | | | RE: | Grady Facility- Vent Line Design and Capacity Assessment | | The US EPA finalized "Standards of Performance for Crude Oil and Natural Gas Facilities for which Construction, Modification or Reconstruction Commenced After September 18, 2015" on June 3, 2016. This regulation has requirements for certifying the design of closed vent systems. An assessment of the closed vent must be performed to determine it is of sufficient design and capacity to ensure that all emissions from storage vessels are routed to the control device or process and have it certified by a qualified professional engineer. This regulation is 40 CFR 40 Subpart 0000a, referred to as the Quad Oa regulation. ## Certification for 40 CFR 60.5411a(d): "I certify that the closed vent system design and capacity assessment was prepared under my direction or supervision. I further certify that the closed vent system design and capacity assessment was conducted and this report was prepared pursuant to the requirements of subpart Quad Oa of 40 CFR part 60. Based on my professional knowledge and experience, and inquiry of personnel involved in the assessment, the certification submitted herein is true, accurate, and complete. I am aware that there are penalties for knowingly submitting false information." #### Purpose: Evaluate the new Grady facility tank battery vent line design to ensure that the thief hatches, which are set at 16 oz/in², will not open during normal operating flow rate scenarios. The normal flow path for the vapor from the storage tanks will be to one flare where the off gas will be combusted to meet Quad Oa regulations. #### Results: Based on the Marathon Oil verified tank orthos and predicted vapor flow rates, Halker Consulting evaluated the pipe routing from the storage tanks to the flare and calculated the expected pressure drop in the system during the Marathon Oil specified maximum predicted vapor flow rates. The pressure at the outlet of the flare was set at local atmospheric pressure of approximately 13.46 psia. Pressure drop through the piping system from the furthest storage tank to the flare was calculated and found to have a backpressure on the tank battery of 0.36 psig (5.5 oz/in²). During normal operating conditions the 5.5 oz/in²g pressure should be the highest
pressure that the tanks will see and is 36% of the of 16 oz/in²g set pressure of the thief hatch. A flare tip pressure drop of 0 oz/in² was used and was based on information provided by Steffes Flare systems for the Air Assist Model 4. The flame arrestor pressure drop used was 1.1 oz/in² and is based on the Enardo sizing program for a 4" Series 8 inline flame arrestor. The total gas flow rate to the flare used was 278 Mscfd (890 lb/hr), and is based on a condensate flash factor provided by Marathon Oil. The gas composition used was the average composition from the February 2017 Clarks Creek (MM) Analysis Summary. Credit was taken for the VRT thereby reducing the amount of flashed gas that was calculated using the provided flash gas factor. Using the same calculation methodology, the total gas flow rate can be increased to approximately 455 Mscfd and stay below the opening pressure of an Enardo ES-660 thief hatch (14.4 oz/in²). This is approximately 1.63 times the normal operating flow. Standard pressure drop "K" value for fittings and valves per Crane Technical Paper 410 were used. The value used for the absolute roughness of steel was 0.00015 ft. *Attached are the tabulated results of the hydraulic calculations and the vent isometric drawing. #### Disclaimer: This assessment meets the certification requirements of 40 CFR part 60 subpart 0000a. It is the responsibility of *Marathon Oil* to comply with the reporting requirements of this regulation. This evaluation does not take into account the destructive efficiency of the controlled device or components upstream of the tank vent design. **Attachment 1- Hydraulic Calculations** | Unit | Marethon Ol
TVCS Vanel | | | Basis / | | | | | | | | | |-------------------|------------------------------|--|----------------------|-------------------------|--------------------|--------------------------|------------------------|--|-------------------------|-----------------------------|------|----------------| | Location:
Unit | | | | Minted In | | | 100 | | | - | | | | | Grady Facilit | | | Notes -> | 5 | | 3 | 2 | , | No segment | | | | Proj #: | 16039-04 | | Am Pres | 13.46 | atm | Outer of KO | 24° | · · | Half of | | | | | By/Chk'd | | D.F | Pres Unit | - | tare to | CAMERICIALO | Drum | Upsteam | banks | | | | | ReviDate: | | 21-Jul-17
agment ID or kno | | GMENT ID | G | H | - | J | K | | | | | Pressure | Upsteam S | egment ID or kno
n Segment ID or i | own press. | psia
psia | 13.46 | | | | | | | | | Data | | essure Up or Dov | | | d | d | ď | 4 | - 4 | | | | | fic Method | (wiemeg Zerb | www.bc.w.e | -Bagg-Brit, Srice | dwnist | | | | Lucian | Cit. | THE REAL PROPERTY. | | | | extup Neth | Pipe Rough | 2 Highmark, 3-L-5 | 4.4-668.5-Eac | (m) | 0.00015 | 0.00015 | 0.50015 | 0.00015 | 0.00015 | | | | | Pipe | Nominal Lie | e Sizs or Internal | Diameter | Inches | 4.000 | 4.000 | 24,000 | 4.000 | 4.000 | - | | | | | Schedule (4
Straight pipe | 0, std. etc.) Blank | iTI.D. given | sbove | 1.0 | 79.0 | 4.0 | 160.0 | 200.0 | | | | | Elev- | Inlet & Outle | t | inlet | | | 18.0 | 7.0 | 160.0 | 200.0 | | | | | ation | OR
Difference | (Outlet - Inlet) | Outlet
Difference | 8 | 0.0 | 0.0 | 6.5 | 0.0 | 0.0 | | | | | | 90's | Std (RJD=1), the | eaded | | | | 4.0 | | | | | | | SK Method | 90's | Short Radius (R | UD=1), figd/s | relded | | | | | 2 | | | | | N NETION | 905 | Standard (R.D. | 1 weld (90 | deg angle) | | - | | | - | | | | | | | Mitered | 2 weld (45 | deg angle) | | - | No. of Lot, House, St. | | | | | | | | Choose type | Plug Valve Brans | ch Flow | deg angle) | 1 | | | | 1 | | | | | | Choose type | Plug Valve Brand
Plug Valve Straig | ght Thru | | | | | | | | | 100 | | Elbows | 45's | Short Radius (F
Standard (R.O= | 1.5), all types | ies. | | | - | | | | _ | | | | | Afterno I would | 45 day and | | | | | | | | | 100 | | | Choose how | Mitered, 2 weld.
Ball Value Full P. | az 5 deg an | gie | | | | Photo de la constitución c | | | - | Contract of | | | | Close Return (F | RID=1), threa | ded | | 1000000 | | Name and | - | 20000 | - | | | | 180's
180 | Close Return (F.D. | 1.5), all been | veided | | | | | | | - | - | | | Used | Standard (R/D= | 1), threaded | | | - | - | 1000 | | | - | Name of Street | | | 85 | Long-radius (R.D. Standard (R.D. | | | | | | | 3 | | | - | | Toes | Elbow | Stub-in type bra
Threaded | inch | , and the | | Taken and the | | | | 1 | | 7 | | | Flow-
thru | Threaded
Flanged or Well | ded | | | - | | | 12 | | | | | | Too | Stub-in type bro | | | | | - | | - 12 | | | | | | Gate, Ball | Full line size, Bo
Reduced trim, B | eta=1.0 | | | | | | | | | | | | or Plug | Reduced trim, 8 | | | | | | | | | | | | | Globe, stand | fard | | | | | | | | | | | | Valves | Butterfly | le or Y-type) or D | naphragm (d | am (ype) | | | | | | | - | - | | | | Lit - min vel (t | | | | | | | | | | | | | Check | Swing-min val
Titing-disk | (ste)= etrice | ue mast.p. | | | | - | 1 | | | - | | | Pipe Entran | Titing-disk
ce/Est?(0=none, | 1+entr. 2+ex | | | 1 | | 2 | | STATE OF THE PARTY NAMED IN | | | | Other | Orifice Diam | ameter (at end)
eter | | in | | | | | | | | | | DP | Initial Swage | fum Diameter | | in | - | | | | 7000 | | | | | | Other Head | ure Drop (Equip,
Pressure Drop (I | Equip, etc.) | t fluid | 0.000 | 120.0 | | | 4 1 1 1 1 | | | | | | Valve Cv (No | in-fashing liquid | only) | gorviper".5
K factor | | RESIDENCE: | | BUT BEAUTY | 100 | 100000 | | | | | | us Flow Resistar
e mass OR volun | | B/hr | | | | | | | | | | Liquid | | | | 90m | the same of the | | | | | | | | | | Density
Viscosity | | | OP OP | | | | | | | | | | | Surface Ten | sion (2 phase on | sky) | dyne/on | | **** | ***** | | | 10000 | | | | | Flow Rate
Density OR | M.ZET | Density | BAS | 859.66 | 889,66 | 889.65 | 865.54 | 444.85 | | | | | Vapor | | | NAV | | 29,14 | 29.14
0.994
-115.0 | 29.14 | 29.14 | 29.14 | | | 17 | | | | | Z
Temp | F | 0.994
115.0 | 115.0 | 0.994
115.0 | 8 994
115.0
0.010 | 0.994
115.0
0.010 | | | | | | Vapor Visco | sity | | di di | 0.010 | 0.010 | 0.010 | 0.010 | | | | | | | al Diameter
p Calculation | Methods | | in | 4.026
DukHugh | 4.026
Duk/Hugh | 23 250
DukHugh | 4.026
DukHugh | 4.026
Duk/Hugh | | | | | | Flow rate | | | Bhr | 0 | 0 | 0 | 0 | 0 | | | | | install | Flow rate
Density | | | gpm
8x83 | 0.00 | 0.00 | 0.0 | 0.00 | 0.00 | | | | | Liquid | Viscosity | | | cP. | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | | | Surface Ten
Flow Rate | sion (2 phase on | nly) | dyne/cm
b-hr | 890 | 0.00 | 890 | 0.00 | 0.00
445 | | | - | | Vapor | Vapor Visco | sity | | cP | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | | | | | | Segment Av | erage Pressure | | palg | 0.00 | 0.06 | 0.13 | 0.20 | 0.31 | | | 1 | | | Vapor Dens
Bulk Densit | | - | (b/E) | 0.0640 | 0.0643 | 0.0646 | 0.0650 | 0.0655 | | | - | | | Pipe Flow A | | | 82 | 0.0884 | 0.0884 | 2.9483 | 0.0884 | 0.07 | | | 1 | | Flow | Bulk Velocit | 1 | • | Bleec | 43.89 | 43.48 | 1.30 | 43.04 | 21.35 | | | | | Para- | Erosional V
Average Vis | elocity if wollds pr | resent | tisec
of | 395.33 | 394.41 | 393.49 | 392.38
0.010 | 390.84 | | | | | | Elevation Ch | ange (Outlet-Inle | 0 | t | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | 1 | | meters | | umber (NRe)
or f (Colebrook I | A Whitel | | 1.40E+05
0.0193 | 1.40E+05
0.0193 | 2.42E+04
0.0249 | 1.40E+05
0.0193 | 6.98E+04
0.0212 | | | | | | K (straight p | ipe) | - | | 0.06 | 4.54 | 0.05 | 10.34 | 1264 | | | | | | K (fittings + | valves)
+ ext + swages | e orifice) | | 0.00 | 0.55 | 0.00 | 1.02 | 562 | | | 1 | | Priction | K (Miscellar | eous Flow Resis | stance + Valv | re Cv) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | | | Total K | d (Average Dens | ity Basis) | # Buid | 0.06
29.66 | 29.39 | 0.05 | 11.90
28.79 | 18.87
7.08 | | | - | | |
Equivalent l | ength | | E BUIC | 1.0 | 99.1
0.1265 | 4.0 | 207.2
6.28138 | 298.6 | | | | | | Upstream P | ressure before Costream Control \ | | psig | 0.0008 | 0.1265 | 0.12654 | 0.28138 | 0.34217 | 68 | 5.47 | 02.ln2 | | | | pstream Control \ | | paig | 0.00 | 0.13 | 0.13 | 0.28 | 0.34 | | | | | TOTAL | Static Head | Pressure Drop | | psi | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | | | Friction Pres | ure Drop (Equip | a relow) | psi
psi | 0.00 | 0.05 | 0.00 | 0.00 | 0.00 | | | | | | Acceleration | Factor | | 1 | 1.96E-03 | 1.94E-03 | 1.73E-06 | 1.90E-03 | 4.68E-04 | | | 1 | | | Segment De | n Pressure Drop
ownsteam Pres. | before C.V. | paig | 0.00 | 0.13 | 0.00 | 0.15 | 0.06 | | | 1 | | | Available De | whsteam Cont | 8 Valve DP | pai | * | | * | r | | | | 1 | | | Pressure at
Error Status | ter Control Valve | | perg | 9,0000
OK | 0.0008
CK
278 | 9.1265
CK | 0.1265
CK | 0.2814
OK | 1 | | | **Attachment 2- Tank Vent Orthos** MITTER # **Hunts Along Facility Tank Battery Vent Line Design & Capacity Assessment** | | | 55 100 LIST | |-------|--|-------------| | TO: | Marathon Oil | (b) (6) | | FROM: | Tim Archuleta | | | CC: | Nate Mascarenas, Kendra Meeker | | | DATE: | July 19, 2017 | | | RE: | Hunts Along Facility- Vent Line Design and Capacity Assessment | | The US EPA finalized "Standards of Performance for Crude Oil and Natural Gas Facilities for which Construction, Modification or Reconstruction Commenced After September 18, 2015" on June 3, 2016. This regulation has requirements for certifying the design of closed vent systems. An assessment of the closed vent must be performed to determine it is of sufficient design and capacity to ensure that all emissions from storage vessels are routed to the control device or process and have it certified by a qualified professional engineer. This regulation is 40 CFR 40 Subpart 0000a, referred to as the Quad Oa regulation. # Certification for 40 CFR 60.5411a(d): "I certify that the closed vent system design and capacity assessment was prepared under my direction or supervision. I further certify that the closed vent system design and capacity assessment was conducted and this report was prepared pursuant to the requirements of subpart Quad Oa of 40 CFR part 60. Based on my professional knowledge and experience, and inquiry of personnel involved in the assessment, the certification submitted herein is true, accurate, and complete. I am aware that there are penalties for knowingly submitting false information." ### Purpose: Evaluate the new Hunts Along Facility tank battery vent line design to ensure that the Enardo ES-660 thief hatches, which are set at 16 oz/in², will not open during normal operating scenarios. The normal flow path for the vapor from the storage tanks will be to two flares where the off gas will be combusted to meet Quad Oa regulations. This tank battery is comprised of three different production trains; Hunts Along, Shoots and Demaray with separate tank vent headers and flare knock out drums which then combine into a single flare header that flows to two flares. #### Results: Based on the 3D piping model (dated 7/19/17) of the vent systems and predicted vapor flow rates, Halker Consulting evaluated the pipe routing from the storage tanks to the flare and calculated the expected pressure drop in the systems during the Marathon Oil specified maximum predicted vapor flow rates. The pressure at the outlet of the flare was set at local atmospheric pressure of approximately 13.5 psia. Pressure drop through the piping systems from the furthest storage tank to the flare was calculated for each of the three production trains. The maximum pressures of the tanks occur on different days of production and are: Hunts Along: 5.1 oz/in2g Shoots: 8.7 oz/in²g Demaray: 7.7 oz/in2g A flare tip pressure drop of 0.0 oz/in² was used and was based on information provided by Steffes Flare systems for the Air Assist Model 4. The flame arrestor pressure drops used is based on the Enardo sizing program for a 6" Series 8 inline flame arrestor. Because this tank vent system is composed of three individual trains each having their own peak rate, each train's peak rate, which occur on different days due to well staggering, were evaluated to determine the maximum pressure at the tanks for each train. It was determined that the maximum pressure for each train is attained at the peak flow rate for each train. The gas composition used was the average composition from the February 2017 Clarks Creek (MM) Analysis Summary. Credit was taken for the VRT on Hunts Along thereby reducing the amount of flashed gas that was calculated using the provided flash gas factor. Shoots and Demaray do not have VRTs installed therefore no reduction in tank vapor rate was applied. | | Day 1: Shoo | ots Peak Rate | | naray Peak Rate /
m Peak Rate | Day 22: Hunt | s Along Peak Rate | |------------------------|-------------------------|--------------------------|-----|----------------------------------|-------------------------|-----------------------------| | | CTB Flowrate
[Mscfd] | CTB Tank Pressure [osig] | | CTB Tank Pressure
[osig] | CTB Flowrate
[Mscfd] | CTB Tank Pressure
[osig] | | Hunts Along CTB | 90 | 2.1 | 159 | 4.9 | 208 | 5.1 | | Shoots CTB | 551 | 8.7 | 422 | 7.4 | 288 | 3.8 | | Demaray CTB | 0 | 1.3 | 394 | 7.7 | 226 | 3.3 | | Total System | 641 | | 975 | | 722 | | Using the same calculation methodology, the total gas flow rate can be increased to approximately 1,303 Mscfd and stay below the opening pressure of an Enardo ES-660 thief hatch (14.4 oz/in²). This is approximately 1.3 times the normal operating flow. The flow was increased by an equal factor of 13% applied to the maximum forecast tank vapor rates for each of the three trains. Standard pressure drop "K" value for fittings and valves per Crane Technical Paper 410 were used. The value used for the absolute roughness of steel was 0.00015 ft. *Attached are the tabulated results of the hydraulic calculations #### Disclaimer: This assessment meets the certification requirements of 40 CFR part 60 subpart 0000a. It is the responsibility of *Marathon Oil* to comply with the reporting requirements of this regulation. This evaluation does not consider the destructive efficiency of the controlled device or components upstream of the tank vent design. # Attachment 1 - Normal Tank Vent Flow Rates 0 # MARATHON HP/LP Flare Capacities Normal flow rates based on Demaray single well facility being staggered to begin production (1) week after first Hunts Along well. Shoots single well facility begins production with first Hunts Along well. Attachment 2 – Hunts Along Peak Rate Hydraulic Calculations | 1 13.5
t psis | atm flare
stack and lip | Downstream of
1st Flare | Common
Discharge | Hunts Along
KO Outlet | | Hunts Nong
Flare Header | Fr Rw Hunts Along
Vent Header | Shoots
KO Outlet | Shoots
KO Drum | | Shoots T-5040
Vent Header | Shoots T-5050
Vent Jumper | Shoots T-5560
Vent Jumper | Demaray
KO Outlet | | Demaray
Flare Header | | No. of the last | |--------------------------|----------------------------|--|---------------------|--------------------------
--|----------------------------|--|--|--|--------------------
--|---------------------------------|------------------------------------|----------------------|--|-----------------------------|----------------|-----------------| | psia
psia | 13.50 | G | н | the latest and | 3 | R | L | | N | 0 | P | 0 | R | - | T | U | V | | | or D)? | d | d | d | d | d | d | d | d | d | d | d | d | d | d | d | d | d | | | othermal)
ton) | | | | | | | | | | | | NAME OF TAXABLE PARTY. | | ACCOUNTS OF | | | | | | Inches | 0.00015
4.000 | 0.00015 | 0.00015 | 0.00015 | 0.00015 | 0.00015 | 0.00015
4.000 | 0.00015
6.000 | 0.00015
24.000 | 0.00015
6.000 | 0.00015
6.000 | 0.00015
6.000 | 0.00015 | 0.00015
6.000 | 0.00015
24.000 | 0.00015
6.000 | 0.00015 | | | above | std
15.0 | 6.000
std | 6.000
std | 6.000
std | 24,000
std | 4.000
std | sid | std | sld
8.0 | std | std | 8 ld | 4.000
stri | std | 8.0 | sid | std
55.0 | | | 市 | 15.0 | 30.0 | 107.0 | 23.0 | 8.0 | 415.0 | 110.0 | 15.0 | 8.0 | 428.0 | 72.0 | 17.0 | 26.0 | 15.0 | 8.0 | 430.0 | 55.0 | | | ft ft | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | -14-4 | | | | | | | PRIVE SUS | | No. | | Name of the last | | | | The same | Cartes | more a | | | velded
s | | 2 | | 1 | | 3 | 1 | Inch/ | Manager 1 | No. | 2 | DOMESTIC OF THE PERSON NAMED IN | 2 | 1 | BINGS. | 1 | 2 | | | deg angle)
deg angle) | | | | Name of Street | | | STATE OF THE PARTY | | POCESTIC OF | DESCRIPTION OF | (C. 10. C. C | | | | Manager . | | | | | deg angle) | | | | | | | C SHIP OF THE PARTY OF | | Library States | PER CONTRACTOR | | | | 200000000 | | | | | | 100 | | | PROSE COM | 7/800000000 | E-MANUAL TOTAL | ROSSES N | Charles | Newson. | STATE OF | PERSONAL PROPERTY. | References | MARKET ! | DEC 4551 | POSTACO CA | CONTRACTOR OF | STATE OF THE OWNER, OR WHEN | | HAN | | s s | No. | | 1 | | | | Party Party Company | 1 | | 2 | | | | | | 2 | | | | le
igle | | | | | | | | | | | DIRECTOR OF THE PARTY PA | | | HOLDEN WA | | | | 200 | | ided | | | | | | | | | District Co. | | CONTRACTOR OF THE | | | | | | | | | velded | | | | | | CHARL CONTRACT | | | TO SHARE | O TRANSPORTED | Description (See | Intertactions | | | | | | | | aded | | | | Marine San | | | | | - Carrier | | BOOM SOUTH | DOMESTIC OF STREET | | | | | | | | r welded | | | | | | | 2 | | PERSONAL PROPERTY. | 2 | 1 | 1 | | | | 1 | 1 | | | | | Name of the last | | | | | | | Liver Liver | | | | | | | | Maria Co. | | | | | | 2 | | | | 7 | And the Party of t | | | 2 | CONTRACTOR | | | Marie Control | | 2 | | | | | | | 1 | No. of Contract | 1 | 1 | 1 | Marie San | -11 | 1 | | | 1 | NAME OF TAXABLE PARTY. | District Control | | | | | | Distance of the last la | | | | | No Service Will | | | | | | | ESTABLE ! | Married Street, or other Persons and the Perso | Color by | Market St. | | | am type) | | | | | | | | | | | Environment | STATE OF THE PARTY. | | E-1-039 | | | | | | s lb/ft3)^.5 | | | | | | | CALL STREET | | | | | | PROPERTY AND ADDRESS OF THE PARTY. | CALCON CO. | Marie Control | | | | | ens lb/ft3)*.5 | | | | Contract to | | | | | | | 1 | | Mariantana
Personania | NAME AND ADDRESS OF | ACTUAL DESCRIPTION | | | | | it3=both) | | | | 1 | | 2 | | 1 | DESCRIPTION OF THE PERSON T | 2 | 1 - 1 - 1 - 1 | 1 1 | 6.000 | 1 | Resident States | 2 | 8.000 | | | in
in
in | | | | | | THE LOCAL | Car Property | TIPO NO STATE | | Bull to the | | la che can | 0.000 | | E STATE OF THE STA | THE COLUMN | 0.000 | | | psi
ft fluid | 0.000 | 0.023 | | BANKS IN | | | HEATER BACK | Total Carlo | | | | | | | | | | | | gpm/psr.5 | | | | | | | | | CONTRACTOR OF THE PERSON NAMED IN | | | | | | | | | | | K factor | | | | N. Carrier | THE STATE OF | | PROFESSION NAMED IN | | The same of | | | | | | 125 | No. | | | | gpm
lb/ft3 | | | | | | | Name and Address of the Owner, where which is Own | MINISTER S | | - | | CALL PROPERTY. | | | - Union | | | | | cP | | | | | | | | | Parameter 1 | | Service Service | | | | | DE STATE | | | | dyne/cm
lb/hr | 1155 | 1155 | 2311 | 666 | 666 | 666 | 333 | 922 | 922 | 922 | 922 | 922 | 922 | 723 | 723 | 723 | 723 | | | Ib/ft3 | 29.14 | 29.14 | 29.140 | 29.140 | 29.14 | 29.14 | THE RESERVE OF THE PERSON NAMED IN | | 29.14 | 29.14 | 29.14 | 29.14 | Section 2 Section 2 | 29.14 | 29.14 | 29.14 | 29.14 | QC | | | 0.994 | 0.994 | 0.994 | 0.994 | 0.994 | 0.994 | 29.14
0.994 | 29.14
0.994 | 0.994 | 0.994 | 0.994 | 0.994 | 29.14
0.994 | 0.994 | 0.994 | 0.994 | 0.994 | | | CP CP | 115.0
0.010 115.Q
0.010 | 115.0
0.010 - 1 | | alm flare
stack and lip | Downstream of | Common | Hunts Along | | And the second second | Fr Rw Hunts Along | Shoots
KO Outlet | Shoots | Shoots | | - | Shoots T-5560 | Demaray | Demaray | Demaray | Demaray | |----------------------------|------------------|------------------|------------------|------------------|-----------------------|-------------------|---------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------| | G G | H | Discharge | KO Outlet | KO Drum | Flare Header | Vent Header
M | N N | KO Drum | Flare Header | VentHeader | Vent Jumper | Vent Jumper | KO Outlet | KO Drum | Flare Header | W | | 4.026 | 6.065 | 6.065 | 6.065 | 23.250 | 4.026 | 4.026 | 6.065 | 23.250 | 6.065 | 6.065 | 6.065 | 4.026 | 6.065 | 23.250 | 6.065 | 4.026 | | Duk/Hugh | Duk/Hugh | Duk/Hugh | Duk/Hugh | Duk/Hugh | Duk/Hugh | DukHugh | Duk/Hugh | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1155 | 1155 | 2311 | 666 | 666 | 666 | 333 | 922 | 922 | 922 | 922 | 922 | 922 | 723 | 723 | 723 | 723 | | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | | 0.00 | 0.01 | 0.07 | 0.10 | 0.10 | 0.20 | 0.31 | 0.10 | 0.11 | 0.13 | 0.17 | 0.18 | 0.21 | 0.10 | 0.10 | 0.12 | 0.17 | | 0.0642 | 0.0642 | 0.0645 | 0.0647 | 0.0847 | 0.0651 | 0.0656 | 0.0647 | 0.0647 | 0.0648 | 0.0650 | 0.0650 | 0.0652 | 0.0647 | 0.0647 | 0.0647 | 0.0650 | | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.07 | 0.07 | 0.06 | 0.06 | 0.06 | 0.06 | 0.07 | 0.07 | 0.06 | 0.06 | 0.06 | 0.06 | | 0.0884 | 0.2006 | 0.2006 | 0.2006 | 2.9483 | 0.0884 | 0.0884 | 0.2006 | 2,9483 | 0.2006 | 0.2006 | 0.2006 | 0.0884 | 0.2006 | 2.9483 | 0.2006 | 0.0884 | | 56.57 | 24.90 | 49.61 | 14.25 | 0.97 | 32.11 | 15.93 | 19.73 | 1.34 | 19.69 | 19.64 | 19.62 | 44.43 | 15.49 | 1.05 | 15.47 | 34.97 | | 394.75 | 394.53 | 393.80 | 393.26 | 393.24 | 391.84 | 390.30 | 393.25 | 393.22 | 392.83 | 392.30 | 392.13 | 391.69 | 393.25 | 393.23 | 392.99 | 392.26 | | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.81E+05 | 1.20E+05 | 2.41E+05 | 6.93E+04 | 1.81E+04 | 1.04E+05 | 5.22E+04 | 9.60E+04 | 2.50E+04 | 9.60E+04 | 9.60E+04 | 9.60E+04 | 1.45E+05 | 7.53E+04 | 1.96E+04 | 7.53E+04 | 1.13E+05 | | 0.0187 | 0.0189 | 0.0173 | 0.0207 | 0.0267 | 0.0200 | 0.0222 | 0.0196 | 0.0247 | 0.0196 | 0.0196 | 0.0196 | 0.0192 | 0.0204 | 0.0262 | 0.0204 | 0.0198 | | 0.84 | 1.12 | 3.67 | 0.94 | 0.11 | 24.73 | 7.29 | 0.58 | 0.10 | 16.58 | 2.79 | 0.66 | 1.49 | 0.60 | 0.11 | 17.33 | 3.24 | | 0.00 | 0.50 | 0.51 | 0.40 | 0.00 | 0.98 | 5.50 | 0.32 | 0.00 | 1.02 | 3.48
0.61 | 0.94 | 1.57 | 0.58 | 0.00 | 1.70 | 3.78
0.92 | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 0.84 | 1.63 | 4.18 | 1.95 | 0.11 | 26.73 | 12.79 | 1.51 | 0.10 | 19.98 | 6.87 | 2.21 | 3.97 | 1.60 | 0.11 | 20.05 | 7.94 | | 49.73 | 9.63 | 38.25 | 3.16 | 0.01 | 16.03 | 3.94 | 6.05 | 0.03 | 6.03 | 5.99 | 5.98 | 30.68 | 3.73 | 0.02 | 3.72 | 19.00 | | 15.0 | 43.4 | 121.8 | 47.8 | 8.0 | 448.6 | 193.0 | 39.1 | 8.0 | 515.7 | 177.4 | 57.0 | 69.4 | 44.6 | 8.0 | 497.5 | 134.7 | | 0.0000 | 0.0297 | 0.1014 | 0.1042 | 0.10422 | 0.29817 | 0.32117 | 0.1056 | 0.10557 | 0.15977 | 0.17837 | 0.18434 | 0.23961 | 0.1045 | 0.10446 | 0.13797 | 0.20616 | | 0.00 | 0.03 | 0.10 | 0.10 | 0.10 | 0.30 | 0.32 | 0.11 | 0.11 | 0.16 | 0.18 | 0.18 | 0.24 | 0.10 | 0.10 | 0.14 | 0.21 | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | #VALUE! | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 0.02 | 0.01 | 0.07 | 0.00 | 0.00 | 0.19 | 0.02 | 0.00 | 0.00 | 0.05 | 0.02 | 0.01 | 0.06 | 0.00 | 0.00 | 0.03 | 0.07 | | 3.28E-03
#VALUE! | 6.36E-04
0.03 | 2.53E-03
0.07 | 2.08E-04
0.00 | 9.65E-07
0.00 | 1.06E-03
0.19 | 2.60E-04
0.02 | 4.00E-04
0.00 | 1.85E-06
0.00 | 3.98E-04
0.05 | 3.95E-04
0.02 | 3.95E-04
0.01 | 2.03E-03
0.06 | 2.46E-04
0.00 | 1.14E-06
0.00 | 2.45E-04
0.03 | 1.25E-03
0.07 | | 0.00 | 0.03 | 0.07 | 0.10 | 0.10 | 0.10 | 0.30 | 0.10 | 0.00 | 0.05 | 0.16 | 0.01 | 0.06 | 0.10 | 0.10 | 0.03 | 0.14 | | 0.00 | 0.00 | 0.03 | 0.10 | 0.10 | 0.10 | 0.20 | 0.10 | | 0.11 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.14 | | 0.0000 | 0.0000 | 0.0297 | 0.1014 | 0.1042 | 0.1042 | 0.2982 | 0.1014 | 0.1056 | 0.1056 | 0.1598 | 0.1784 | 0.1843 | 0.1014 | 0.1045 | 0.1045 | 0.1380 | | OK | 0.057 | 0.025 | 0.050 | 0.014 | 0.001 | 0.033 | 0.016 | 0.020 | 0.001 | 0.020 | 0.020 | 0.020 | 0.045 | 0.016 | 0.001 | 0.016 | 0,035 | | 361,000 | 361
361,000 | 722,000 | 208,000 | 208,000 | 208,000 | 104,000 | 288,000 | 288
288,000 | 288,000 | 288
288,000 | 288
288,000 | 288,000 | 226,000 | 226,000 | 226,000 | 226,000 | | | | | | | | | | | | | | | | | | | Attachment 3 - Shoots Peak Rate Hydraulic Calculations | 13.5
psia
GMENT ID: | atm flare
stack and fip
G | Downstream of
1st Flare | Common
Discharge | | | | Fr Rw Hunts Along
Vent Header
M | | Shoots
KO Drum | | | Shoots T-5050
Vent Jumper | | | | Demaray
Flare Header | | |---|---------------------------------|----------------------------|-------------------------|------------------------|-----------------------|-----------------------|---------------------------------------|------------------------|------------------------|------------------------|------------------------|------------------------------|------------------------|---------------------|---------------------------------|----------------------------------|---------------------| | psia
psia
or D)? | 13.50
d | G
d | H
d | i d | J | R
d | L d | d | N
d | Ö
d | P | 0 | R | d | T
d | U
d | V
d | | n) ft inches | 0.00015
4.000 | 0.00015
6.000 | 0.00015 | 0.00015 | 0.00015 | 0.00015 | 0.00015
4.000
sld
110.0 | 0.00015 | 0.00015 | 0.00015 | 0.00015
6.000 | 0.00015 | 0.00015
4.000 | 0.00015 | 0.00015
24.000
std
8.0 | 0,00015
6,000
sld
430.0 | 0.00015
4.000 | | bove ft ft | 15.0
0.0 | 30.0
0.0 | 61d
107.0 | 81d
23.0 | 8.0
0.0 | 415.0 | 110.0 | std
15,0 | 8 0
0 0 | std
428.0 | 72.0 | 81d
17.0 | 8 ld
26.0 | 15.0
0.0 | 8.0 | 430.0 | 55.0
0.0 | | elded | 0.0 | 2 | 0.0 | 1 | 0.0 | 3 | 1 | 0.0 | | 0.0 | 2 | | 2 | 1 | | 1 | 2 | | leg angle)
leg angle)
leg angle) | | | | | | | | | | | | | | | | | | | 18 | | | 1 | | | | | | | 2 | | | | 1 | | 2 | | | led
alded | | | | | | | | | | | | | | | | | | | ded
welded | | | | | | | 2 | | | 2 | 1 | 1 | 1 | | | 1 | 1 | | | | | 2 | 1 | | 1 | 7 | | | 1 | 2 | | | | | | 2 | | m type) | | | | | | | | | | | | | | | | | | | Ib/ft3)^.5
is Ib/ft3)^.5 | | | | | | | 1 | | | | 1 | | | | | | 1 | | 3=both)
in
in | | | | | | 2 | | | | | | | 6.000 | | | | 6.000 | | ft fluid
gpm/psr.5
K factor | 0.000 | 0.019 | | | | | | | | | | | | | | | | | ib/hr
gpm
ib/ft3
cP
dyne/cm | | | | | | | | | | | | | | | | | | | lb/ft3 | 1026
20.14
0.904 | 1026
29.14
0.994 | 2051
29.140
0.994 | 268
29.140
0.994 | 288
29.14
0.994 | 288
29.14
0.994 | 144
29.14
0.994 | 1763
29.14
0.994 | 1763
20.14
0.994 | 1763
29,14
0.994 | 1763
29.14
0.994 | 1763
29.14
0.994 | 1763
29.14
0.994 | 0
29,14
0,994 | 0
29.14
0.994 | 0
29.14
0.994 | 0
29.14
0.994 | | F
cP | 115.0
0.010 | 115 0
0.010 | 115.0
0.010 115.0 | 115.0
0.010 | 115.0
0.010 | 115.0 | 115.0 | 115.0
0.010 | 115.0
0.010 | | 1.5 | atm flare
stack and tip | Downstream of
1st Flare | Common
Discharge | KO Outlet | THE RESERVE TO RE | Hunts Along
Flare Header | Fr Rw Hunts Along
Vent Header | Shoots
KO Outlet | KO Drum | Shoots
Flare Header | | Shoots T-5050
Vent Jumper | Shoots T-6560
Vent Jumper | Domaray
KO Outlet | Demaray
KO Drum | Demarsy
Flare Header | Demaray
Vant Header | |-------|----------------------------|----------------------------|---------------------|-----------|--|-----------------------------|----------------------------------|---------------------|----------|------------------------|----------------|------------------------------|------------------------------|----------------------|--------------------|-------------------------|------------------------| | T ID. | G | H | 1 | J | K | L | M | N | 0 | P | Q | R | S | T | U | V | W | | in | 4.026 | 6.065 | 6.065 | 6.065 |
23.250 | 4.026 | 4.026 | 6.065 | 23.250 | 6.065 | 6.065 | 6.065 | 4.026 | 6.065 | 23.250 | 6.065 | 4.028 | | | Duk/Hugh DukHugh | Duk/Hugh | Duk/Hugh | | lb/hr | 0 | 0 | Ô | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | mqg | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | b/R3 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | cP | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | /cm | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | b/hr | 1026 | 1026 | 2051 | 288 | 288 | 288 | 144 | 1763 | 1763 | 1763 | 1763 | 1763 | 1763 | 0 | 0 | 0 | 0 | | cP | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.000 | 0.000 | 0,000 | 0.000 | | gisig | 0.00 | 0.01 | 0.05 | 0.08 | 0.08 | 0.10 | 0.13 | 0.08 | 0.09 | 0.17 | 0.29 | 0.34 | 0.44 | 0.08 | 0.08 | 0.08 | 0.08 | | o/#13 | 0.0642 | 0.0642 | 0.0644 | 0.0646 | 0.0646 | 0.0647 | 0.0648 | 0.0646 | 0.0646 | 0.0650 | 0.0656 | 0.0658 | 0.0663 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | M3 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.07 | 0.07 | 0.07 | 0.00 | 0.00 | 0.00 | 0.00 | | ft2 | 0.0884 | 0.2006 | 0.2006 | 0.2006 | 2.9483 | 0.0884 | 0.0884 | 0.2006 | 2 9483 | 0.2006 | 0.2006 | 0.2006 | 0.0884 | 0.2006 | 2.9483 | 0.2006 | 0.0884 | | sec | 50.22 | 22.11 | 44.09 | 6.18 | 0.42 | 14.00 | 6.99 | 37.81 | 2.57 | 37.56 | 37.24 | 37.12 | 83.59 | 0.00 | 0.00 | 0.00 | 0.00 | | sec | 394.75 | 394.57 | 393.98 | 393.56 | 393.55 | 393.26 | 392.92 | 393.52 | 393.49 | 392.24 | 390.54 | 389.93 | 388.42 | 0.00 | 0.00 | 0.00 | 0.00 | | cP | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.000 | 0.000 | 0.000 | 0.000 | | ft | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | _ | 1.61E+05 | 1.07E+05 | 2.14E+05 | 3.00E+04 | 7.82E+03 | 4.52E+04 | 2.26E+04 | 1.84E+05 | 4.79E+04 | 1.84E+05 | 1.84E+05 | 1.84E+05 | 2.77E+05 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | | | 0.0190 | 0.0193 | 0.0176 | 0.0243 | 0.0331 | 0.0228 | 0.0261 | 0.0179 | 0.0214 | 0.0179 | 0.0179 | 0.0179 | 0.0180 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | 0.85 | 1.14 | 3.72 | 1.10 | 0.14 | 28.21 | 8.57 | 0.53 | 0.09 | 15.14 | 2.55 | 0.60 | 1.40 | 0.00 | 0.00 | 0.00 | 0.00 | | 11 | 0.00 | 0.50 | 0.51 | 0.42 | 0.00 | 1.02 | 5.63 | 0.00 | 0.00 | 2.37 | 3.45 | 0.94 | 1.56 | 0.00 | 0.00 | 0.00 | 0.00 | | - II | 0.00 | 0.00 | 0.00 | 0.61 | 0.00 | 1.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.61 | 0.61 | 0.92 | 0.00 | 0.00 | 0.00 | 0.00 | | - 11 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | _ | 0.85 | 1.65 | 4.23 | 2.14 | 0.14 | 30.25 | 14.21 | 0.53 | 0.09 | 17.51 | 6.61 | 2.15 | 3.87 | 0.00 | 0.00 | 0.00 | 0.00 | | luid | 39.19 | 7.60 | 30.20 | 0.59 | 0.00 | 3.04 | 0.76 | 22.21 | 0.10 | 21.92 | 21.55 | 21.41 | 108.58 | 0.00 | 0.00 | 0.00 | 0.00 | | В | 15.0 | 43.2 | 121.7 | 44.6 | 8.0 | 445.0 | 182.3 | 15.0 | 8.0 | 495.0 | 186.8 | 60.7 | 72.1 | 0.0 | 0.0 | 0.0 | 0.0 | | gia | 0.0000 | 0.0243 | 0.0816 | 0.0822 | 0.08216 | 0.12351 | 0.12836 | 0.0869 | 0.08689 | 0.26046 | 0.32540 | 0.34642 | 0.54137 | 0.0816 | 0.08159 | 0.08159 | 0.08159 | | psi | 0.00 | 0.02 | 0.08 | 0.08 | 0.08 | 0.12 | 0.13 | 0.09 | 0.09 | 0.26 | 0.33 | 0.35 | 0.54 | 0.08 | 0.08 | 0.08 | 0.08 | | psi | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | psi | #VALUE! | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | psi | 0.01 | 0.01 | 0.06 | 0.00 | 0.00 | 0.04 | 0.00 | 0.01 | 0.00 | 0.17 | 0.06 | 0.02 | 0.19 | 0.00 | 0.00 | 0.00 | 0.00 | | | 2.59E-03 | 5.02E-04 | 1.99E-03 | 3.91E-05 | 1.81E-07 | 2.01E-04 | 5.01E-05 | 1.47E-03 | 6.79E-06 | 1.45E-03 | 1.42E-03 | 1.41E-03 | 7.17E-03 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | | psi | #VALUE! | 0.02 | 0.06 | 0.00 | 0.00 | 0.04 | 0.00 | 0.01 | 0.00 | 0.17 | 0.05 | 0.02 | 0.19 | 0.00 | 0.00 | 0.00 | 0.00 | | psi | 0.00 | 0.00 | 0.02 | 0.08 | 0.08 | 80.0 | 0.12 | 0.08 | 0.09 | 0.09 | 0.26 | 0.33 | 0.35 | 80.0 | 0.08 | 80.0 | 80.0 | | sig | 0.0000 | 0,000 | 0.0243 | 0.0816 | 0.0822 | 0.0822 | 0.1235 | 0.0816 | 0.0869 | 0.0869 | 0.2605 | 0.3254 | 0.3464 | 0.0816 | 0.0816 | 0.0816 | 0.0816 | | 77 | OK
0.051 | 0K
0.022 | OK | OK | OK | OK. | OK
0.007 | OK | OK | OK | OK | OK
0.038 | OK | OK | OK | OK | OK | | MI | 0.051 | | 0.045 | 0.006 | 0.000 | 0.014 | 0.007 | 0.038 | 0.003 | 0.038 | 0.038 | | 0.085 | NA O | NA A | NA A | NA A | | 1 | 320,500 | | 641,000 | 90,000 | 90,000 | 90,000 | 45,000 | 551,000 | 551,000 | 551,000 | 551
551,000 | 551
551,000 | 551,000 | 0 | 0 | 0 | 0 | Attachment 4 – Demaray Peak Rate Hydraulic Calculations | 13.5
psia
GMENT ID: | atm flare
stack and tip | Downstream of 1st Flare | Common
Discharge | KO Outlet | KO Drum | Flare Header | Fr Rw Hunts Along
Vent Header | KO Outlet | Shoots
KO Drum | | Vant Header | Shoots T-5050
Vent Jumper | Vent Jumper | KO Outlet | KO Drum | Flare Header | | |---|--|--|---|-----------------------------------|----------------------------------|----------------------------------|---|--|--|----------------------------------|----------------------------------|----------------------------------|----------------------------------|--|--|----------------------------------|--| | psia
psia
psia
or D)? | 13.50
d | G
d | H
d | J
d | J
d | K
d | t d | N
d | N
d | 0
d | P
d | R
O
d | R
d | I d | T d | U | V | | inches | 0.00015
4.000
std
15.0 | 0.00015
6.000
std
30.0 | 0.00015
6.000
std
107.0 | 0.00015
6.000
std
23.0 | 0,00015
24 000
std
8.0 | 0.00015
4.000
std
415,0 | 0.00015
4.000
std
110.0 | 0.00015
6.000
std
15.0 | 0.00015
24.000
std
8.0 | 0.00015
6.000
std
428.0 | 0.00015
6,000
sld
72.0 | 0.00015
6.000
std
17.0 | 0.00015
4.000
813
26.0 | 0.00015
6.000
std
15.0 | 0.00015
24 000
std
8.0 | 0.00015
6.000
std
430.0 | 0.00015
4.000
std
55.0 | | ft ft ft elded | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | ieg angle)
ieg angle)
ieg angle) | | 2 | | | | 3 | | | | | 2 | | 2 | | | | 2 | | 35
ile | | | 1 | | | | | | | 2 | | | | 1 | | 2 | | | led
elded
ded | | | | | | | | | | | | | | | | | | | welded | | | 2 | | | | 7 | | | 2 | 2 | | | | | | 2 | | m type) | | | | 1 | | | | | | | | | | | | | | | ib/ft3)^.5
is lb/ft3)^.5
3=both) | | | | 1 | | 2 | 1 | 1 | | 2 | 1 | | 1 6.000 | | | 2 | 1 6,000 | | in
in
psi
ft fluid
gpmps/.5
K factor | 0.000 | 0.037 | | | | | | | | | | | | | | | | | Ib/hr
gpm
Ib/ft3
cP | | | | | | | | | | | | | | | | | | | dyne/cm
lb/hr
lb/ht3 | 1560
29.14
0.994
115.0
0.010 | 1560
29.14
0.994
115.0
0.010 | 3120
29.140
0.994
115.0
0.010 | 29.140
0.994
115.0
0.010 | 29.14
0.994
115.0
0.010 | 29.14
0.994
115.0
0.010 | 254
29.14
0.994
115.0
0.010 | 1350
29.14
0.994
115.0
0.010 | 1350
29.14
0.994
115.0
0.010 | 29.14
0.994
115.0
0.010 | 29.14
0.994
115.0
0.010 | 29.14
0.994
115.0
0.010 | 29.14
0.994
115.0
0.010 | 1261
29.14
0.994
115.0
0.010 | 1261
29.14
0.994
115.0
0.010 | 29.14
0.994
115.0
0.010 | 1281
29.14
0.994
115.0
0.010 | | sia | atm flare
stack and tip | Downstream of
1st Flare | Common
Discharge | Hunts Along
KO Outlet | | Hunts Along
Flare Header | Fr Rw Hunts Along
Vent Header | Shoots
KO Outlet | Shoots
KO Drum | Shoots
Flare Header | | Shoots T-5050
Vent Jumper | Shoots T-5560
Vent Juniper | Demaray
KO Outlet | Demaray
KO Drum | Demaray
Flare Header | Demaray
Vent Header | |---------------|----------------------------|----------------------------|---------------------|--------------------------|----------|-----------------------------|----------------------------------|---------------------|-------------------|------------------------|--------------|------------------------------|-------------------------------|----------------------|--------------------|-------------------------|------------------------| | T ID | G | H | - 1 | J | К | L | M | N | 0 | P | 0 | R | S | T | U | V | W | | in | 4.026 | 6.065 | 6.065 | 6.065 | 23.250 | 4.026 | 4.026 | 6.065 | 23.250 | 6.065 | 6.065 | 6.065 | 4.026 | 6.065 | 23.250 | 6.055 | 4.026 | | | Duk/Hugh | DukHugh | Duk/Hugh | Duk/Hugh | Duk/Hugh | Duk/Hugh | Duk/Hugh | DukHugh | Duk/Hugh | Duk/Hugh | Duk/Hugh | Duk/Hugh | DuloHugh | Duk/Hugh | Duk/Hugh | Duk/Hugh | DukHugh | | - Ib/hr | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | gpm
lb/ft3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 1b/ft3 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | cP | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.00 | | eicm | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | lb/hr | 1560 | 1560 | 3120 | 509 | 509 | 509 | 254 | 1350 | 1350 | 1350 | 1350 | 1350 | 1350 | 1261 | 1261 | 1261 | 1261 | | cP | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | | psig | 0.00 | 0.02 | 0.11 | 0.18 | 0.18 | 0.24 | 0.30 | 0.18 | 0.19 | 0.24 | 0.31 | 0.34 | 0.40 | 0.18 | 0.19 | 0.23 | 0.38 | | Ib/ft3 | 0.0642 | 0.0643 | 0.0647 | 0.0650 | 0.0650 | 0.0653 | 0.0656 | 0.0650 | 0.0651 | 0.0653 | 0.0657 | 0.0658 | 0.0661 | 0.0650 | 0.0651 | 0.0653 | 0.0660 | | Ib/ft3 | 0.06 | 0.06 | 0.06 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | | ft2 | 0.0884 | 0.2006 | 0.2006 | 0.2006 | 2.9483 | 0.0884 | 0.0884 | 0.2006 | 2.9483 | 0.2006 | 0.2006 | 0.2006 | 0.0884 | 0.2006 | 2.9483 | 0.2006 | 0.0884 | | Msec | 76.39 | 33.60 | 66.76 | 10.84 | 0.74 | 24.48 | 12.18 | 28.75 | 1.96 | 28.63 | 28.47 | 28.42 | 64.20 | 26.84 | 1.83 | 26.74 | 60.05 | | Msec | 394.75 | 394.39 | 393.11 | 392.18 | 392.17 | 391.34 | 390.41 | 392.13 | 392.07 | 391.29 | 390.23 | 389.87 | 388.97 | 392.13 | 392.07 | 391.40 | 389.33 | | cP | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | | ft | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | 2.45E+05 | 1.62E+05 | 3.25E+05 | 5.30E+04 | 1.38E+04 | 7.98E+04 | 3.99E+04 | 1,41E+05 | 3.67E+04 | 1.41E+05 | 1.41E+05 | 1.41E+05 | 2.12E+05 | 1.31E+05 | 3.43E+04 | 1,31E+05 | 1.98E+05 | | _ | 0.0182 | 0.0182 | 0.0168 | 0.0217 | 0.0285 | 0.0208 | 0.0233 | 0.0185 | 0.0226 | 0.0185 | 0.0185 | 0.0185 | 0.0184 | 0.0187 | 0.0230 | 0.0187 | 0.0186 | | - | 0.81 | 1.08 | 3.56 | 0.99 | 0.12 | 25.69 | 7.65 | 0.55 | 0.09 | 15.68 | 2.64 | 0.62 | 1.43 | 0.55 | 0.09 | 15.90 | 3.04 | | II. | 0.00 | 0.50 | 0.51 | 0.41 | 0.00 | 1.02 | 5.53 | 0.32 | 0.00 | 1.01 | 3.46
0.61 | 0.94
0.61 | 1.56
0.92 | 0.57 | 0.00 | 1.69 | 0.92 | | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | 0.81 | 1.58 | 4.07 | 2.01 | 0.12 | 27.70 | 13.18 | 1.48 | 0.00 | 19.06 | 6.71 | 2.17 | 3.91 | 1.74 | 0.00 | 18.60 | 7.73 | | fluid | 90.68 | 17.54 | 69.27 | 1.82 | 0.01 | 9.32 | 2.31 | 12.85 | 0.05 | 12.74 | 12.60 | 12.55 | 64.06 | 11.20 | 0.05 | 11.12 | 56.04 | | ft | 15.0 | 43.9 | 122.3 | 46.7 | 8.0 | 447.5 | 189.6 | 40.4 | 8.0 | 520.5 | 183.1 | 59.2 | 71.1 | 47.0 | 8.0 | 503.1 | 139.6 | | psig | 0.0000 | 0.0493 | 0.1765 | 0.1781 | 0.17812 | 0.29519 | 0.30905 | 0.1851 | 0.18506 | 0.29529 | 0.33386 | 0.34631 | 0.46171 | 0.1853 | 0.18525 | 0.27906 | 0.47816 | | psig | 0.00 | 0.05 | 0.18 | 0.18 | 0,18 | 0,30 | 0.31 | 0.19 | 0.19 | 0.30 | 0,33 | 0.35 | 0.46 | 0.19 | 0,19 | 0.28 | 0.48 | | psi | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | psi | #VALUE! | 0.04 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | psi | 0.03 | 0.01 | 0.13 | 0.00 | 0.00 | 0.12 | 0.01 | 0.01 | 0.00 | 0.11 | 0.04 | 0.01 | 0.11 | 0.01 | 0.00 | 0.09 | 0.20 | | | 5.99E-03 | 1.16E-03 | 4.57E-03 | 1.20E-04 | 5.58E-07 | 6.15E-04 | 1.52E-04 | 8.48E-04 | 3.93E-06 | 8.41E-04 | 8.32E-04 | 8.29E-04 | 4.23E-03 | 7.39E-04 | 3.42E-06 | 7.34E-04 | 3.70E-03 | | -psi | #VALUE! | 0.05 | 0.13 | 0.00 | 0.00 | 0.12 | 0.01 | 0.01 | 0.00 | 0.11 | 0.04 | 0.01 | 0.12 | 0.01 | 0.00 | 0.09 | 0.20 | | psig | 0.00 | 0,00 | 0.05 | 0.18 | 0.18 | 0.18 | 0.30 | 0.18 | 0.19 | 0.19 | 0.30 | 0.33 | 0.35 | 0.18 | 0.19 | 0.19 | 0.28 | | psig | 0.0000 | 0.0000 | 0.0493 | 0.1765 | 0.1781 | 0.1781 | 0.2952 | 0.1765 | 0.1851 | 0.1851 | 0.2953 | 0.3339 | 0.3463 | 0.1765 | 0.1853 | 0.1853 | 0.2791 | | | OK
0.077 | OK
0.034 | 0.068 | 0K
0.011 | 0.001 | OK
0.025 | 0K
0.012 | OK
0.029 | OK
0.002 | OK
0.029 | OK
0.029 | OK
0.029 | OK | OK
0.027 | OK. | 0.027 | OK
0.081 | | MI | | 488 | 975 | 0.011 | 159 | 159 | 0.012 | 422 | 0.002 | 422 | | 422 | 0.065 | 394 | 0.002 | 394 | 394 | | 101 | 488
487,500 | 487,500 | 975,000 | 159,000 | 159,000 | 159,000 | 79,500 | 422,000 | 422,000 | 422,000 | 422,000 | 422,000 | 422,000 | 394,000 | 394,000 | 394,000 | 394,000 | | hAIR | 20.361 | 20.361 | 40,723 | 6.641 | 6.641 | 6.641 | 3,320 | 17.826 | 17,626 | 17,626 | 17,626 | 17,626 | 17.626 | 16,456 | 16,456 | 16,458 | 16,456 | **Attachment 5 - Maximum Flow Rate Hydraulic Calculations** | 13.5
psia | atm flare
stack and tip | Downstream of
1st Flare | Common
Discharge | KO Outlet | KO Drum | Flare Header | Fr Rw Hunts Along
Vent Header | KO Outet | | Flare Header | Shoots T-5040
Vent Header | Vent Jumper | Vent Jumper | KO Outlet | | Demaray
Flare Header | Vent Header | |------------------------|----------------------------|----------------------------|--|--
---|--|-----------------------------------|---|----------------------|---|------------------------------|----------------------------|---|------------------------
--|--|----------------------| | GMENT ID. psia | G | Н | | J | K | L CONTRACTOR OF THE PERSON NAMED IN CONT | M | N | 0 | Р | Q | R | S | T | U | V | W | | psia
or D)? | 13.50
d | G
d | H | d | d | K | d d | 1 | N | 0 | d | Q d | R | d | 7
d | 0 | ď | | ermal) | 100000 | | 10000 | | | | PRODUCTION OF THE PERSON NAMED IN | | | | | | | | | | | | n) | 0.00015 | 0.00015 | 0.00015 | 0.00015 | 0.00015 | 0.00015 | 0.00015 | 0.00015 | 0.00015 | 0.00015 | 0.00015 | 0.00015 | 0.00015 | 0.00015 | 0.00015 | 0.00015 | 0.00015 | | inches | 4.000
std | 6.000
std | 6.000
std
107.0 | 8.000
std
23.0 | 24.000
std
8.0 | 4.000
std | 4.000
std
110.0 | 6,000
std
15.0 | 24.000
std
8.0 | 6.000
std
428.0 | 6.000
std
72.0 | 6.000
std
17.0 | 4.000
atd
26.0 | 6,000
std
15.0 | 24,000
std
8.0 | 6.000
std
430.0 | 4.000
std
55.0 | | ft. | 15.0 | 30.0 | 107.0 | 23.0 | 8.0 | 415.0 | 110.0 | 15.0 | 8.0 | 428.0 | 72.0 | 17.0 | 26.0 | 15.0 | 8.0 | 430.0 | 55.0 | | n
n | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | ded | | | | The second | NAME OF BRIDE | No. of Concession, | | Carlo Carlo | | | | | | | | NAME OF THE OWNER, OWNE | THE REAL PROPERTY. | | g angle) | | 2 | | 1 | PER MINISTER | 3 | 1 | ACCESSES. | Control of the | LINE DELICATION | 2 | | 2 | 1 | | 1 | 2 | | eg angle)
eg angle) | Marine Control | | | SECTION AND DESCRIPTION OF THE PERSON NAMED IN COLUMN TWO IN COLUMN TO THE PERSON NAMED IN COLUMN TWO TW | | | A Company of Print | | | Control of | CONTRACT SOURCE | CONSTRUCTION | Michigan Company | | District of the last la | Control de la co | | | | | | | | | | STATE OF THE REAL PROPERTY. | | DE ANIM | | | EU COCONO | NAME OF TAXABLE PARTY. | | No. | REG. 10 | | | | | | 1 | | | NC IN LAND | ATTENDED | 1 | | 2 | TO MAKE S | | C. Tresente | 1 | FOR TOP IN | 2 | MARCH SE | | | | | Contract of the | | | | Name of Street | | | | | | | | | | | | d | | | | | | AND LOCAL | | | | PERSONAL PROPERTY. | | | | 100000 | | | | | ded | | | | | | | | | | District of the last | | | | | | Richard Co. | | | | | | | | | | | | | AND DESCRIPTION OF THE PERSON NAMED IN COLUMN 1 | | Participation of the | | | | | | | ed
relded | | | | | | | 2 | | | 2 | 1 | 1 | 1 | | | 1 | 1 | | | | | | | | | | | | ESTATE AND | NAME AND ADDRESS OF THE | | | | BURNING S | | | | | | | 2 | STEEL STEEL | MARKET SEC | | 7 | | Marie L | | 2 | DENNISHTACK
NUMBER SEES | CHILD SECTION | NAME OF TAXABLE PARTY. | | | 2 | | | BOOK STREET | | STATE OF THE PARTY | CONTRACTOR | | Section 1 | | | | CONTRACTOR OF THE | | | | THE PERSON | Contains | CONTRACTOR OF | | | | | | | | | | | | | | CONTRACTOR OF SAME | | | | | | | | type) | | | | THE REAL PROPERTY. | Maria de la compansión | | CHARLES BOARD | | DEPARTURE OF | TAX SAME | CHURCHUS COM | TO GO TO SHOW THE | PERSONAL PROPERTY. | TO THE RES | PARTIE DESIGNATION OF THE PARTIES | STATE OF THE STATE OF | Marines II | | /ft3)^.5
lb/ft3)^.5 | September 1 | | | | Park of the last | AND DESIGNATION OF THE PERSON NAMED IN COLUMN 1 | 1 | COLUMN TO SERVICE AND | Market Committee | | CONTRACTOR DESCRIPTION | | DESCRIPTION OF THE PERSON NAMED IN COLUMN 1 | 100000 | COLOR DE | DECEMBER OF THE | Description of the | | eboth) | Marie Barrier | | MANUAL PROPERTY. | 4 | | 2 | | CALL SHOWING | NS OF STREET | 2 | | | The same of | THE PERSON NAMED IN | Secreta | 2 | | | in | | | | | | D. POINT | 12/4 | | | No. | | | 6.000 | | | | 6,000 | | in | 0.000 | 0.060 | | | | | | NAME OF TAXABLE PARTY. | PIL SECRET | 1000 | 03500000 | Name of the last of | NO. SEEDING | and the same | Section. | Marie Sales | Shipping Shipping | | R fluid | 0.000 | 0.000 | | | | | | | | | | Marie Town | PROPERTY AND ADDRESS OF THE PARTY | | | | | | K factor | | | | | SERVICE | | | No. | | No. | | | | | | | | | Ib/hr
gpm
Ib/ft3 | Marie Control | | Marie Val | | | | | | | | No. of Contrast | | Marie Control | | | The same of | | | cP | | | | Manager Service | English market | REPORT OF THE | HARACON CONT. | Control of the last | See (190) | | | Mesans of | BENEVAL NO. | | | | | | dyne/cm
lb/hr | 2085 | 2085 | 4170 | 752 | 752 | 752 | 376 | 1993 | 1993 | 1993 | 1993 | 1993 | 1993 | 1425 | 1425 | 1425 | 1425 | | lb/ft3 | 29.14 | 29.14 | 29.140 | 29.140 | 29.14 | 29.14 | | 29.14 | 29.14 | 29.14 | 29.14 | 29.14 | 29.14 | 29.14 | 29.14 | 29.14 | 29.14 | | F | 0.994
115.0 | 0.994
115.0 | 0.994 | 0.994
115.0 | 0.994 | 0.994 | 29.14
0.994
115.0 | 0.994 | 0.994 | 0.994 | 0.994 | 0.994
115.0 | 0.994
115.0 | 0.994
115.0 | 0.994
115.0 | 0.994 | 0.994 | | сP | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 115.0
0.010 | 0.010 | 0.010 | 0.010 | 115.0
0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | | i3.5 | atm flare
stack and tip | Downstream of
1st Flare | Common | Hunts Along
KO Outlet | 1000 | Hunts Along
Flare Header | Fr Rw Hunts Along
Vent Header | Shoots
KO Outlet | KO Drum | Shoots
Flare Header | | Shoots T-5050
Vent Jumper | Shoots T-5560
Vant Jumper | Demaray
KO Outlet | NO Drum | Demaray
Flare Header | Demaray
Vent Header | |--------|----------------------------|----------------------------|-----------|--------------------------|----------|-----------------------------|----------------------------------|---------------------|----------------|------------------------|----------------|------------------------------|------------------------------|----------------------|----------|-------------------------|------------------------| | NT ID | G | н | 1 | J | K | L | M | N | 0 | P | Q | R | S | T | U | V | W | | in | 4.026 | 6.065 | 6.065 | 6.065 | 23.250 | 4.026 | 4.026 | 6.065 | 23.250 | 6.065 | 6.065 | 6.065 | 4.026 | 6.065 | 23.250 | 6.065 | 4.026 | | | Duk/Hugh | DukHugh | Duk/Hugh | DukHugh | Duk/Hugh DukHugh |
Duk/Hugh | Duk/Hugh | | Duk/Hugh | | lb/hr | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | gpm | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Ib/ft3 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | cP | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | ne/cm | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | lb/hr | 2085 | 2085 | 4170 | 752 | 752 | 752 | 376 | 1993 | 1993 | 1993 | 1993 | 1993 | 1993 | 1425 | 1425 | 1425 | 1425 | | cP | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | | psig | 0.00 | 0.04 | 0.19 | 0.31 | 0.31 | 0.43 | 0.56 | 0.31 | 0.32 | 0.44 | 0.59 | 0.64 | 0.78 | 0.31 | 0.31 | 0.37 | 0.56 | | Ib/ft3 | 0.0642 | 0.0644 | 0.0651 | 0.0656 | 0.0656 | 0.0662 | 0.0668 | 0.0657 | 0.0657 | 0.0662 | 0.0870 | 0.0672 | 0.0679 | 0.0656 | 0.0657 | 0.0659 | 0.0668 | | 1b/ft3 | 0.06 | 0.06 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | | ft2 | 0.0884 | 0.2006 | 0 2006 | 0.2006 | 2.9483 | 0.0884 | 0.0884 | 0.2006 | 2 9483 | 0 2006 | 0.2008 | 0.2006 | 0.0884 | 0.2006 | 2.9483 | 0.2006 | 0.0884 | | t/sec | 102.08 | 44.84 | 88.69 | 15.87 | 1.08 | 35.70 | 17.68 | 42.02 | 2.86 | 41.65 | 41.19 | 41.04 | 92.25 | 30.05 | 2.04 | 29.91 | 67.00 | | t/sec | 394.75 | 394.16 | 391.97 | 390.36 | 390.34 | 388.65 | 386.79 | 390.26 | 390.13 | 388.54 | 386.41 | 385.68 | 383.86 | 390.31 | 390.23 | 389.41 | 386.86 | | cP | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | | ft | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | - | 3.27E+05 | 2.17E+05 | 4.34E+05 | 7.83E+04 | 2.04E+04 | 1.18E+05 | 5.90E+04 | 2.08E+05 | 5.41E+04 | 2.08E+05 | 2.08E+05 | 2.08E+05 | 3.13E+05 | 1.48E+05 | 3.87E+04 | 1.48E+05 | 2.24E+05 | | - 11 | 0.0178 | 0.0175 | 0.0164 | 0.0202 | 0.0259 | 0.0197 | 0.0218 | 0.0176 | 0.0208 | 0.0176 | 0.0176 | 0.0176 | 0.0178 | 0.0184 | 0.0224 | 0.0184 | 0.0184 | | | 0.80 | 1.04 | 3.48 | 0.92 | 0.11 | 24.34 | 7.14 | 0.52 | 0.09 | 14.93 | 2.51 | 0.59 | 1.38 | 0.55 | 0.09 | 15.64 | 3.01 | | - 1 | 0.00 | 0.50 | 0.51 | 0.40 | 0.00 | 0.98 | 5.49 | 0.32 | 0.00 | 2.37 | 3.45 | 0.94 | 1.56 | 0.57 | 0.00 | 1.69 | 3.76 | | - 11 | 0.00 | 0.00 | 0.00 | 0.61 | 0.00 | 1.02 | 0.00 | 0.61 | 0.00 | 1.01 | 0.61 | 0.61 | 0.92 | 0.61 | 0.00 | 1.01 | 0.92 | | - 11 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | 0.80 | 1.54 | 3.98 | 1.93 | 0.11 | 26.33 | 12.63 | 1.45 | 0.09 | 18.31 | 6.57 | 2.14 | 3.86 | 1.73 | 0.09 | 18.34 | 7.69 | | fluid | 161.93 | 31.25 | 122.25 | 3.91 | 0.02 | 19.81 | 4.86 | 27.44 | 0.13 | 26.95 | 26.37 | 26.17 | 132.25 | 14,04 | 0.06 | 13.91 | 69.76 | | ft | 15.0 | 44.3 | 122.6 | 48.3 | 8.0 | 449.1 | 194.6 | 41.6 | 8.0 | 525.0 | 188.4 | 61.3 | 72.5 | 47.5 | 8.0 | 504.3 | 140.5 | | psig | 0.0000 | 0.0815 | 0.3034 | 0.3069 | 0.30685 | 0.54696 | 0.57545 | 0.3216 | 0.32160 | 0.54900 | 0.62971 | 0.65587 | 0.89848 | 0.3145 | 0.31446 | 0.43134 | 0.68136 | | psi | 0.00 | 0,08 | 0.30 | 0.31 | 0.31 | 0.55 | 0,58 | 0.32 | 0.32 | 0.55 | 0.63 | 0.66 | 0.90 | 0.31 | 0.31 | 0.43 | 0.68 | | psig | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.32 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | psi | #VALUE! | 0.06 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | psi | 0.06 | 0.02 | 0.22 | 0.00 | 0.00 | 0.24 | 0.03 | 0.02 | 0.00 | 0.23 | 0.08 | 0.03 | 0.24 | 0.01 | 0.00 | 0.12 | 0.25 | | - | 1.07E-02 | 2 06E-03 | 8.07E-03 | 2.58E-04 | 1.20E-06 | 1.31E-03 | 3.21E-04 | 1.81E-03 | 8.38E-06 | 1.78E-03 | 1.74E-03 | 1.73E-03 | 8.73E-03 | 9.27E-04 | 4.29E-06 | 9.18E-04 | 4.61E-03 | | psi | #VALUE! | 0.08 | 0.22 | 0.00 | 0.00 | 0.24 | 0.03 | 0.02 | 0.00 | 0.23 | 0.08 | 0.03 | 0.24 | 0.01 | 0.00 | 0.12 | 0.25 | | psig | 0.00 | 0.00 | 0.08 | 0.30 | 0.31 | 0.31 | 0.65 | 0.30 | 0.32 | 0.32 | 0.55 | 0.63 | 0.66 | 0.30 | 0.31 | 0.31 | 0.43 | | psig | 0.0000 | 0.0000 | 0.0816 | 0.3034 | 0,3069 | 0.3069 | 0.5470 | 0.3034 | 0.3216 | 0.3216 | 0.5490 | 0.6297 | 0.6559 | 0.3034 | 0.3145 | 0.3145 | 0.4313 | | | OK OK. | OK | M | 0.103 | 0.046 | 0.091 | 0.016 | 0.001 | 0.036 | 0.018 | 0.043 | 0.003 | 0.043 | 0.042 | 0.042 | 0.094 | 0.030 | 0.002 | 0.030 | 0.068 | | fd] | 651
651,445 | 651
651,445 | 1,302,890 | 235
235,040 | 235,040 | 235
235,040 | 118
117,520 | 622,630 | 623
622,630 | 623
622,630 | 623
622,630 | 623
622,630 | 623
622,630 | 445,220 | 445,220 | 445,220 | 445,220 | | 4 | 091,440 | 001,440 | 1,302,090 | 230,040 | 230,040 | 230,040 | 117,020 | 022,030 | 022,030 | 022,030 | 022,030 | 022,030 | 022,030 | 443,220 | 443,220 | 440,220 | 440,220 | # Kattevold USA CTB Vent Line Design & Capacity Assessment | | man - | |---|--| | Marathon Oil | (b) (6) | | Tim Archuleta | ž. | | Nate Mascarenas, Kendra Meeker | | | July 17, 2017 | \$ | | Kattevold USA CTB- Vent Line Design and Capacity Assessment | | | | Tim Archuleta Nate Mascarenas, Kendra Meeker July 17, 2017 | The US EPA finalized "Standards of Performance for Crude Oil and Natural Gas Facilities for which Construction, Modification or Reconstruction Commenced After September 18, 2015" on June 3, 2016. This regulation has requirements for certifying the design of closed vent systems. An assessment of the closed vent must be performed to determine it is of sufficient design and capacity to ensure that all emissions from storage vessels are routed to the control device or process and have it certified by a qualified professional engineer. This regulation is 40 CFR 40 Subpart 0000a, referred to as the Quad Oa regulation. # Certification for 40 CFR 60.5411a(d): "I certify that the closed vent system design and capacity assessment was prepared under my direction or supervision. I further certify that the closed vent system design and capacity assessment was conducted and this report was prepared pursuant to the requirements of subpart Quad Oa of 40 CFR part 60. Based on my professional knowledge and experience, and inquiry of personnel involved in the assessment, the certification submitted herein is true, accurate, and complete. I am aware that there are penalties for knowingly submitting false information." ## Purpose: Evaluate the new Kattevold USA CTB tank battery vent line design to ensure that the Enardo ES-660 thief hatches, which are set at 16 oz/in^2 , will not open during normal operating flow rate scenarios. The normal flow path for the vapor from the storage tanks will be to two flares where the off gas will be combusted to meet Quad Oa regulations. This tank battery is comprised of two different production trains: the Kattevold USA CTB and Alexander USA single well facility with separate tank vent headers and flare knock out drums which then combine into a single flare header that flows to two flares. #### Results: Based on the 3D model (dated 7/6/17) of the vent systems and predicted vapor flow rates, Halker Consulting evaluated the pipe routing from the storage tanks to the flare and calculated the expected pressure drop in the system during the Marathon Oil specified maximum predicted vapor flow rates. The pressure at the outlet of the flare was set at local atmospheric pressure of approximately 13.5 psia. Pressure drop through the piping system from the furthest storage tank to the flare was calculated for each of the well pads with the following results: Kattevold USA CTB: 6.3 oz/in²g Alexander USA single well facility: 3.7 oz/in²g A flare tip pressure drop of 0.0 oz/in² was used and was based on information provided by Steffes Flare systems for the Air Assist Model 4. The flame arrestor pressure drop used was 0.64 oz/in² and is based on the Enardo sizing program for a 6" Series 8 inline flame arrestor. Because this tank vent system is composed of two individual production trains each having their own peak rate, two total system peak rates were evaluated corresponding to the peak rates from each individual production train. It was determined that the worst case scenario exists when the total gas flow rate was 1,022 Mscfd (3,271 lb/hr) which corresponds to the Kattevold production train peak rate. The tank gas flow rate is based on a condensate flash factor and gas composition provided by Marathon Oil. The gas composition used was the average composition from the February 2017 Clarks Creek (MM) Analysis Summary. Using the same calculation methodology, the total gas flow rate can be increased to approximately 1,584 Mscfd and stay below the opening pressure of an Enardo ES-660 thief hatch (14.4 oz/in²). This is approximately 1.55 times the normal flow. The flow was increased by an equal factor of 55% applied to the maximum forecast tank vapor rates for each of the two trains. Standard pressure drop "K" value for fittings and valves per Crane Technical Paper 410 were used. The value used for the absolute roughness of steel was 0.00015 ft. *Attached are the tabulated results of the hydraulic calculations #### Disclaimer: This assessment meets the certification requirements of 40 CFR part 60 subpart 0000a. It is the responsibility of *Marathon Oil* to comply with the reporting requirements of this regulation. # **Attachment 1 - Normal Hydraulic Calculations** | | | | Calculations | | | | 1 | | 4 7 7 | | | | | 1/100 | | |------------------
--|--|---|--|--
--|---|--|---|--|---|--|--|--|-------------| | lare | Merstren DE | | Sun is / | | | | | | | | | | | 80.00 | | | roject
roaton | Name and CT | | false -> | | | | | | | 1000 | | | | | | | nit
roj# | | Forw Calculations | 135 | 0.5 | - | - | 200 | Winds. | Marie . | | | 200 | - | Selection . | | | ByChire | 19036-17 | Pres U | | See to | THE BOW | DNS | Rest KD
Outer | Van KD
Dean | Fine Flore | Fire Verd | Plant NO | Others | Alon Tiere
Heater | Ann. Vers | You. | | lev/Date | ALC: NO. | 12-Jul-17 | SEGMENT E | 6 | н | 1 | - 3 | - 8 | L | M | N | 0 | - | 0 | | | ****** | | agment ID or known press.
Segment ID or known press. | pro | 13.50 | | | | | | The same of | - | | | DADAGE | | | ata | & known pre | esure Up or Downstream (Ue | 0)3 | diam' | 6 | | | | | 4 | | THE REAL PROPERTY. | 4 | 4 | | | ric Method | (1-4-to-map 2 or | Harte-Duker 3-1, 41 4-degp 5:11 1
+Haghmark, 3-1, 46, 6-848, 5-East | nashemat | | | | 10000 | STATE OF | Name of Street | | 20000 | | 1000 | DODGE | | | tiroup Wath | Fige Rough | 1859 | an) | 0,00015 | 0.00015 | 0.00016 | 0.00016 | 0.00015 | 0.00015 | 0.00015 | 0.00048 | 0.00015 | 0.00016 | omes | | | Ppr | Naminal Line | Size or Internal Chamater | inches | 4,000 | 6.000 | 6.000 | 6,000 | 24.00 | 8,000 | 8,000 | 8,000 | 24.000 | 6.000 | 4.000 | | | | Streight pipe | 0, std, etc.) Blank #1D. given a
length | DOYA | 20.0 | 70.0 | 77.0 | #M
#0.0 | 40 | 210.5 | NI. | 100 | 4.0 | 200.0 | 886 | | | No. | Straight pipe
triet & Outer | | - | and the last | | | | Honey. | No. of Lot | | | | E-STATE OF | | | | den | Ofference | (Outlet - Inlet) Ofference | 1000 | 9.0 | 0.0 | 00 | 0.0 | - 00 | 0.0 | 80 | 68 | 8.5 | 65 | 0.0 | | | | Offerwore
90's | 5td (R:O=1), 8veaded | | | | | | - 00 | RELIGIO | Contract to | Name of Street | THE R. | 1200 | Charles St. | | | K Netrod | 971 | Short Radius (R/D+1), fig0h
Standard (R/D+1 S), all tippe | mosd. | - | - | | 2 | - | | 2 | 2 | | 1 | | | | | | Standard (RID=1 S), all tope
1 weld (R | dug angle | MINISTER ! | | | | | DEC STATE | The same of | | PERSONAL PROPERTY. | | | | | | | Swell (X | deg angle
deg angle | - | - | | | | | 10000 | | | | 1 | | | | Choose type | Plug Valve Branch Fibre | | 1000 | | | | | C DECIMAL STATE | Name and Address of the Owner, where | No. of Lot | | Topics: | | | | | 570000 hos | Plug Valve Straight Thru
Short Radius (RIO-1), all to | 100 | | | | | | - | - | | | | | | | bows | 471 | Short Radius (RIO-1), all to
Standard (RIO-1 S), all type
Mitered, 1 weld, 45 deg angle | | | | | | | A STATE OF | The state of | No. of Lot | Witness. | The same | - | | | | | Mered 2 weld, 22.5 deg and | | | | - | | | 100000 | | - | | | | | | | Choose trop | Mered 2 web, 22.5 deg ary
Bull Valve Full Port
Close Return (R/O+1), Bress | - | | | Distance of the last | | | | and the last | | - | | | | | | 1903 | Close Return (RID+1), fools | rekted | | - | | The State of | | | THE STATE OF | - | No. | | - | | | | 180 | Close Return (RID+1), footh
Standard (RID+1,5), all type
Standard (RID+1), three-led | | Description of the last | | LICE SERVICE S | - | - | MCC294 | O ELICAN | - | | The same of | | | | | Used | Long-radius (R/D=1.5), that | ded | | | THE REAL PROPERTY. | 2000 | | | 1 | | | | | | | | 80 | Standard (R/D+1), flanged o | welded | | COLUMN TWO | E SECTION AND ADDRESS OF THE PERSON ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON ADDRESS OF THE PERSON ADDRESS OF THE PERSON ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSO | - | | SEE HER | OTHER PROPERTY. | Name and | FE 24 | 1000 | 2 | | | ees | Flow | Stub-in type branch
Threaded | | | | Charles on | The state of | NAME OF TAXABLE PARTY. | The same of | To the same | U.S. | 1000 | | Total Control | | | | tvu | Flanged or Welded | | | PER COST | | STATE STATE OF | Statement of the last | COURS (COURS | 2 | | 100 | District Name of Street, or other Designation of the least name | The State | | | | Tee | Stub-in type tranch
Full line size, Beta=1.0 | - | 1000000 | 1 | | 1 | | The last of | 1 | | | | | | | | Clate, Ball or
Plug | Reduced tim, Batan0.9 | | 2000 | and the same | No. | 1000 | talo fauts | RESTAURANT . | | | | - | | | | | Giote, stand | Reduced tim, Betar0.6 | | | | | | | | | | | | | | | blves | Globe - (Ang | le or Y-type) or Disphragm (da | m (ype) | | No. of Lot | Name and Post | NAME OF TAXABLE PARTY. | Marine Li | No. | No in case | A COLUMN TWO | | | No. of Lot | | | | Butterfly | Lift - min val (Ris)+ Military | - NAMES OF | | 2000 | | TO LOS | | 10000 | | | NEW COLUMN | A. Carrier | | | | | Check | Swing - min vel (5%)= 40(a) | | - | Section 2 | | | - CLIN | | | | No. of Lot | | 1 | | | | Pro Estrato | Titing-disk
re-Exthiphrope Heat , 24ed | Total Control | | | | | | | | | | Name and Address of the Owner, where | | | | | Swage to Do | ameter (at end) | The Party of P | | Total Control | | | | | | | | | | | | Other
OP | Orlfoe Diam | eter
ton Demeter | - | | | | | | A PROPERTY. | 100000 | | - | | | | | | Other Fress | ure Drop (Equip. etc.) | 270 | 8.868 | 8.565 | | | | | | | | | | | | | Other Head I | Pressure Drop (Equip. etc.) | 11/0 | APPENDING FOR | | | - | 1000 | The Real Property lies | 100000 | | | | | | | | Miscellaneou | on-fashing liquid only?)
is Flow Resistance | gon par S
 The same of | | | | | | | | | | | | | Ap All | Flow (provide | mass OR volume basis) | taly. | | | | | - | | | Green | | | | | | April | Density | | 670 | | THE REAL PROPERTY. | | | 100 | | | | - | | | | | | Veccesty
Surface Texas | nine (Zerbana mile) | ¢P. | | | | DOTAL STREET | COCO | | 1000000 | - | | Parties and Partie | E PROCESSO | | | | Flow Rate | eion (Zphase pris)
ew. za 1 Denety | B/V
B/G | 1,635 | 1.60 | 3.271 | 2.290 | 7.29 | 2.29 | 3,130 | 1.011 | 1.011 | 1.011 | 624 | | | Лирог | General Own | W. ZAT Carety_ | 673 | 200.44 | 90.14 | Control of the last | THE REAL PROPERTY. | 200.00 | 200 | 2014 | - | 70.14 | AND DESCRIPTION OF THE PERSON | Printers and the last | | | age. | | Z | _ | 0.994 | 29.14
0.994
115.0 | 0 (64
115.0 | 0.004
110.0 | 0.004 | C.REA | 0.004 | 0.004 | 0.004 | Obel | 29.14
0.994
115.0 | | | | Vana Vana | Temp | F | 115.0 | 115.0 | 115.0 | 9100 | 115.0 | 115.0 | 1150 | 118.9 | 118.0 | 115.0 | 1150 | | | pe interne | Waper Viscos
Diameter
Calculation M | 19 | 10 | 4.026 | 6.065 | 6.065 | 8.065 | 23 280 | 6 065 | 6 096 | 6.066 | 23 20 | 6.065 | 6.065 | | | P / Holdup | Calculation M | lethods . | | Dukhtugh | DUNHugh | DUMHligh | DURTHUGH | Dukfrligh | DukHigh | Dukflagh | DUAFFLIER | DUNFLOR | Diantign | Dukitsugh | | | | Flow rate
Flow rate | | Str. | 00 | 00 | 00 | 0.0 | 0.0 | 00 | 00 | 60 | 0.0 | 00 | 0.0 | | | Dags | Density | | BACO. | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | Viscosity
Surface Terr | sion (2 phase pray) | dnelon | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | | sion (2 shase sris) | Mr. | 1636 | 1605 | 0.00
3271 | 2299
2299 | 2259
2259 | 2259 | 1130 | 1011 | 1011 | 1011 | 674 | | | Marce | Segment Au | oty
orage Pressure | pay | 0.010 | 0.010 | 0.010 | 0.18 | 0.010 | 0.010 | 0.010 | 0.010 | 0.17 | 0.19 | 0.22 | | | | Vapor Densit | ty (Avg) | BAG. | 0.0642 | 0.0643 | 0.0647 | 0.0650 | 0.0681 | 0.0685 | 0.0000 | 0.0649 | 0.0660 | 0.0651 | 0.0952 | | | | Bulk Dersety | (Aug) | BPD | 0.06 | 0.06 | 0.06 | 9.07 | 0.07 | 0.07 | 0.07 | 0.06 | 0.06 | 10.0 | 0.07 | | | low | Pipe Flow Ar
Bulk Velocity | | Name of Street | 80 07 | 0.2006
35.20 | 0.2006
69.99 | 6 2006
46 11 | 3.27 | 0.2006
47.75 | 0.2006
29.71 | 0.2006
21.56 | 1.47 | 0.2006
21.51 | 0.2006 | | | | Erosienel Ve | looily if solids present | Name | 394.75 | 394 28 | 263.13 | 392.17 | 391.69 | 390 71 | 389.32 | 392 41 | 392.35 | 391 98 | 391.52 | | | | Average Visc
Elevation Chi | oneity
ange (Outlet-Inlet) | EP | 0.010 | 0010 | 000 | 0010 | 0.010 | 0.010 | 0010 | 0010 | 0010 | 0.010 | 0010 | | | 22- | | imber (NRe) | | 2.57E+05 | 6.70E+05 | 3.41E+05 | 2.35E+05 | 614E+04 | 2.356+05 | 1.18E+05 | 1.056+06 | 2.75E+04 | 1 05E+05 | 7.02E=04 | | | | Raynolds Nu | or f. (Coletrook & White) | | 0.0181 | 2.50 | 2.39 | 1 05 | 0.0203 | 7 22 | 2.97 | 0.0193 | 0.0242 | 0 0193 | 2.57 | | | | Raynolds Nu
Friction Fact | ne) | | | 0.30 | 0.33 | 0.81 | 0.00 | 1.90 | 4.41 | 1.26 | 0.00 | 2.95 | 4.27 | | | | Raynolds No.
Friction Fact
K (straight pi
K (Stings +) | pe) valves) 4 | | 0.00 | | 0.00 | 0.61 | 0.00 | 1.01 | 0.61 | 0.61 | 0.00 | 1.02 | 0.61 | | | who | Raynolds Nu
Fraction Fact
K (straight pi
K (Stings * v
K (entrance | pe) vshes) * exit + exages + orifice) | C-1 | 0.00 | 0.00 | 0.00 | 0.00 | | | | | | | | 1 | | who | Reynolds Nu
Friction Fact
K (athought pi
K (fittings + v
K (entrance
K (Miscettany
Total K | ce) rahes) • exit + exages + orfice) sous Flow Resistance + Valve | | 0.00 | 0.00 | 0.00 | 2.45 | | | | | | 16.19 | | | | who | Reynolds Nu
Friction Fact
K (straight pi
K (fittings = v
K (entrance
K (Miscettary
Total K
Uslooty Hea | pe) rahes) * exit + enisges + orfice) sous Flow Resistance + Valve d (Average Density Basis) | Cv) | 0.00
0.00
1.06
99.63 | 0 00
0 00
2 69 | 0.00
2.72
76.12 | 2.45
36.97 | 0.04 | 10.23 | 7.98
8.73 | 732 | 005 | 719 | 7.45 | | | utes | Reynolds Nu
Fraction Fact
K (streight or
K (fittings = s
K (entrance
K (Mocettane
Total K
Velocity Hea
Equivalent le
Uoctean Pr | pe) white) + exit + exages + orfice) boxs Flow Resistance + Valve d (Average Density Basis) path costure before CV | | 0.00
0.00
1.06 | 0:00
0:00
2:69 | 0.00 | | | | | | | | | 6.3 gaig 5 | | retera | Reynolds Nu
Fraction Fact
K (straight p
K (fittings + v
K (entrance
K (Miscettary
Total K
Usicoty hea
Equivalent le
Upstream Pr
Austable Ups | pe) valves) + exit + exispes + orifice) + exit + exispes + orifice) cous Flow Resistance + Valve d (Average Density Basis) costs costure before CV esteam Control Valve DP | t hud
h
prig
prig | 0.00
0.00
1.06
99.63
20.0 | 0:00
0:00
2:59
19:25
61:0 | 0.00
2.72
76.12
62.1 | 245
20.97
71.2
0.3 | 0 04
0 17
4 0
6.2 | 10 23
35 44
297 4
6.4 | 7.98
8.73
212.5
0.4 | 7 224
7 22
58 8 | 003 | 718
6238 | 7.45
3.18
182.6 | 8.3 osig 5 | | riction | Risynolds Nu
Friction Facility
K (straight pi
K (straight or
K (straight or
K (straight or
K (straight or
Velooity Hea-
Eautaled to
Upsteam Pr
Auslable Ups
Segment Up
Segment Up
Static Head | oe) * exit + exages + arifice) pour Flow Resistance + Volue d (Avarage Density Basis) (XID) existing before CV wheam Control Value DP wheam pressure Pressure Drop | # fluid
(Mig.
(Mig.
(Mig. | 0.00
0.00
1.06
99.63
20.0
0.6 | 0:00
0:00
2:59
19:25
61:0
0.1 | 0.00
2.72
76.12
82.1
0.34 | 2.45
30.97
71.2
0.3 | 0.04
0.17
4.0
6.2 | 10 23
36 44
297 4
6.4 | 7.68
8.73
212.5
0.4
0.40 | 7 22
7 22
58 8
8.1 | 0.05
0.03
4.0
8.17 | 96.18
7.19
623.8
83
6.23 | 7.45
3.18
182.6
0.21 | f.3 only 5 | | riction | Reynolds Nu
Fiscion Facility
K (straight of
K (straight of
K (straight of
K (Mocetan
Total K
Velooity Nea
Equivalent to
Upstrain Upstrain
Available Up
Segment Up
Static Head
Other Press | oe) solves) * exit * energes * orifice) gous From Resistance * visive # (Average Density Basis) politics before CV stream pressure Pressure Drop # Drop (Equ. to Allow) | # flux
frig
prig
prig
prig
prig | 0.00
0.00
1.06
99.63
20.0
0.0
0.00
#WALLE | 0:00
0:00
2:59
19:25
61:0
0.1
0.0
0:00
0:04 | 0.00
2.72
76 12
82.1
6.16
0.00
0.00 | 2.45
26.97
71.2
9.3
0.20
0.00
0.00 | 0.04
0.17
4.0
8.3
0.20
0.00
0.00 | 10 23
35 44
297 4
6.36
0.00
0.00 | 7.98
8.73
212.5
0.4
8.48
0.00
0.00 | 2 24
7 22
58 8
8 1
9.17
0.00
0.00 | 0.05
0.03
4.0
8.1
0.17
0.00
0.00 | 93.19
7.19
423.6
8.2
0.00
0.00 | 7.45
3.18
182.6
0.2
0.23
0.00
0.00 | f.3 osig A | | friction | Reprode No. Fraction Fact
K (atmight pl K (fittings +) K (enthance
K (who et al.) Total K
Unicoty Hea
Eachgled to
Upsteam Pr
Assisted Up
Static Head
Other Press
Friction Pres | oe) **axin = exages * artifice) **axin = exages * artifice) double flow Resistance * Valve di (Average Deneity Basis) OSB. exacte before CV extern Deneity Valve DP extern pressure Pressure Dressure Dress | # fluid
(5%)
(5%)
(5%)
(5%)
(5%) | 0.00
0.00
1.06
99.63
20.0
0.6
0.00
#/ALLE: | 0:00
0:00
2:59
19:25
61:0
0:1
0:00
0:00
0:04
0:02 | 0.00
2.72
76 12
82.1
8.1
6.16
0.00
0.00
0.00 | 2.45
26.97
71.2
8.3
0.30
0.00
0.00
0.04 | 0.04
0.17
4.0
8.3
0.20
0.00
0.00
0.00 | 10 23
35 44
297 4
8.4
6.36
0.00
0.00
0.16 | 7.98
8.73
212.5
0.4
6.40
0.00
0.00
0.00 | 2.24
7.22
58.6
8.1
9.17
0.00
0.00
0.00 | 0.05
0.03
4.0
8.1
9.17
0.00
0.00
0.00 | 16.19
7 19
423.6
6.22
0.00
0.00
0.00 | 7.45
3.18
182.6
0.2
0.00
0.00
0.00 | 8.3 only 3 | | riction | Raynolds Nu.
Fraction Fact
K (straight pi
K (fatings +)
K (entrained
K (Mocetary
Total K
Velooity Hea
Eauhaland le
Ups beam Pi
Available Ups
Segment Up
Safe Head
Other Presss
Friction Pres
Accaleration
Total System | cel ** axit = enages = erifice) cour Fron Resistance = Value If (Nearage Censity Basis) (XII) ** axit = enage Censity Basis) (XIII) ** axit = enage Censity Basis) (XIII) ** axit = enage Censity Basis) ** axit = enage Censity Basis enages Censi | \$ 0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.0 | 0.00
0.00
1.08
99.63
20.0
8.8
6.60
0.00
F/ALUE!
0.06
6.60E-03 | 0:00
0:00
2:59
19:25
61:0
6.1
6.06
0:00
0:04
0:02
1.27E-03
0:08 | 0.00
2.72
76 12
82.1
8.14
0.00
0.00
0.00
0.00
0.00
5.03E-03
5.08 | 2.45
26.97
71.2
0.3
0.20
0.00
0.00
0.04
2.37E-0.3
0.04 | 0.04
0.17
4.0
8.3
0.20
0.00
0.00
0.00
0.00
0.00
0.00 | 10.23
36.44
267.4
8.4
0.00
0.00
0.16
2.34E-0.3
0.17 | 7.98
8.73
212.5
0.4
0.40
0.00
0.00
0.00
0.03
5.77E-04
0.03 | 2.24
7.22
58.8
0.17
0.00
0.00
0.01
4.77E-04 | 0.05
0.03
4.0
8.1
0.17
0.00
0.00
0.00
2.216-06
0.00 | 16.19
7.19
423.6
8.2
0.00
0.00
0.05
4.75E-04
0.05 | 7.45
3.18
182.6
0.2
0.00
0.00
0.00
0.01
2.10E-04
0.01 | 8.3 osig 3 | | riction | Reynolds Nu.
Fraction Facility (18 control of the | 04) **axi **avages **artice) **axi **avages **artice) **axi **avages **artice) **axi **avages
Density Basis) 08D. **avages Density Basis) **avages Density Basis) **avages Density Valve DP **avages Density Valve DP **avages Density | \$ 5.45
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40
(5.40 | 0.00
1.08
99.63
20.0
0.8
6.60
0.00
#/ALLE:
0.06
6.50E-03 | 0:00
0:00
2:99
19:25
61:0
0:1
0:00
0:04
0:02
1:27E-03 | 0.00
2.72
76 12
82 1
8.14
0.00
0.00
0.00
5.03E.03 | 2.45
26.97
71.2
8.3
0.20
0.00
0.00
0.04
2.37E-03 | 0.04
0.17
4.0
6.3
6.26
0.00
0.00
0.00
0.00
0.00
0.00 | 10 23
35 44
297 A
6.4
6.36
0.00
0.00
0.16
2.34E-03 | 7.98
8.73
212.5
0.4
0.00
0.00
0.00
0.03
5.77E-04 | 2.24
7.22
58.6
8.1
0.17
0.00
0.00
0.00
4.77E-04 | 0.05
0.03
4.0
8.1
0.17
0.00
0.00
0.00
0.00
2.216-06 | 98.19
7 19
423.8
8.22
0.00
0.00
0.00
4.75E-04 | 7.45
3.18
182.6
0.3
0.00
0.00
0.00
0.01
2.10E-04 | 5.3 only 3. | | riction | Risprekte Nu. Fraction Each
K (straight pi K (fibrigs + v K (entrance
K (straight pi K (fibrigs + v K (entrance
K (straight) | orl) **axi = sinages = artice) **axi = sinage Density Basis) **pass **passare Density Basis) **passare Density = Density Basis **pressure Density = | \$ 0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.0 | 0.00
0.00
1.08
99.63
20.0
8.8
6.60
0.00
F/ALUE!
0.06
6.60E-03 | 0:00
0:00
2:59
19:25
61:0
6.1
6.06
0:00
0:04
0:02
1.27E-03
0:08 | 0.00
2.72
76 12
82.1
8.14
0.00
0.00
0.00
0.00
0.00
5.03E-03
5.08 | 2.45
26.97
71.2
0.3
0.20
0.00
0.00
0.04
2.37E-0.3
0.04 | 0.04
0.17
4.0
8.3
0.20
0.00
0.00
0.00
0.00
0.00
0.00 | 10.23
36.44
267.4
8.4
0.00
0.00
0.16
2.34E-0.3
0.17 | 7.98
8.73
212.5
0.4
0.40
0.00
0.00
0.00
0.03
5.77E-04
0.03 | 2.24
7.22
58.8
0.17
0.00
0.00
0.01
4.77E-04 | 0.05
0.03
4.0
8.1
0.17
0.00
0.00
0.00
2.216-06
0.00 | 16.19
7.19
423.6
8.2
0.00
0.00
0.05
4.75E-04
0.05 | 7.45
3.18
182.6
0.2
0.00
0.00
0.00
0.01
2.10E-04
0.01 | 5.3 gelg 3. | # **Attachment 2 - Normal Tank Vapor Forecast** # MARATHON Tank Vent Forecast Normal Flow Scenario 1: Kattevold USA 44-33TFH begins flowback with Alexander USA 44-33TFH. Pfundheller USA 44-33H begins flowback one week later. Attachment 3 - Maximum Rated Capacity Hydraulic Calculations | | | | Calculations | 1 | | 1000 | 10000 | | | | 100 | - | 135 | | | |----------------|--|---|--
--|--|--|--
--|---|---|--|---|--|--|-------------| | lient. | Marathon De | | Bosis / | | | - 111 | | | | | | | | 2000 | | | ojest
caton | Kate-old CT | | Notes | | | 1333 | | | | | | | | | | | it
ge | TVCS Maxim | Jim Piou Calculations | 13.5 | - | 64 | - | and the same | - | The sale | 200 | Since. | - | - | 600 | | | MCHER | 16039-17 | Pres Un | | See to | fet face | CINS
commission | Nati NO
Outlet | Drum | Katt Flare
Header | Kett Vent
Header | Plex ND
Dubet | Ass KD
Drum | Avet Flare
Freeder | Pleaser | Rat. | | v/Date | No. of Concession, Name of Street, or other Designation, Name of Street, | 12-Jul-17 S | EGNENT IO | 0 | H | 1 | 1 | K | L | м | N | 0 | - | 0 | | | ssure | | egment ID or known press
Segment ID or known pres | | 13,50 | - | | | | | L | | N. | - | - | | | ta | is known pro | essure Up or Donnatiesm (I | U or Dj7 | 8 | | 4 | - 0 | - 6 | 4 | 8 | 0 | | 4 | 4 | | | Method | districted and | ren-Curar Int. o. 6-Beggi 8-1 fr-
2 mkghmari, 3-L-M,4-B&B,5-E | settema) | Black Co. | | 10000 | | Married | | | | | | | | | orde water | Pripe Rough | ness | - A | 0.00015 | 6.50015 | 8,00015 | 0.00018 | 0.00015 | 0.00015 | 8 000015 | 6.00015 | 8 58616 | 8 58015 | 0.00015 | | | | Nominal Lin
Schedule (4 | e Size or internal Diameter
0, std. etc.) Blank (FLD. given | Inches | 4,500 | 6300 | 6.000 | 6 600 | 24 000 | 6.000 | 6 000 | 6 000 | 24,500 | 6,000 | 6.800 | | | | Straight pipe
mar & Oude | length | | 9/d
20.0 | 70.0 | 72.0 | 30.0 | 4.0 | 210 B | 79.0 | 10.0 | 4.0 | 1200 | 63.0 | | | N- | OR | Outlet | - | | | | | | | | | | | | | | | Oifference
90's | (Outlet-Inlet) Outlet | | 0.0 | 0.0 | 0.0 | 90 | 62 | 0.0 | 0.0 | 0.0 | 0.0 | 00 | 0.0 | | | | | BRANCH CONTRACT BAR | helded | | 1000 | | | - | | | | | 200 | | | | Method | 90's | Standard (R/D=1,5), all type
I weld (R/D=1,5) | Adea angle) | 1000 | 1 | | | | 100 | 2 | | | Name and | | | | | | Meisting 2 weig (4) | o deg angle) [| | | | | | | | | | Aller Street | The same of | | | | Choose Mod | | | | | | | | | | | | DESCRIPTION OF | | | | | Choose type | Pug Valve Branch Flow Pug Valve Straight Thru Short Radius (R/O=1), all ty | 1 | Service of the last | | | | | | | | | | Contraction of the last | | | ows * | 45%
45% | Short Radius (R/O=1), all ty
Standard (R/O=1.5), all type | pes | | - | | | | TOTAL STREET | | | | | | | | | | Mitered 1 weld 45 dep and | sia . | | | - | A STATE OF | | Land of the land | | | | No. | Lacore | | | | Choose type | Mared 2 weld 22 5 deg a
Ball Valve Full Port | nge . | | | | | - | | | | | | | | | | | Cities Return (RID+1), Pire. | eded | | Name and Address of the Owner, where which is Own | SECTION 1 | | Contract of the th | | | | - | | The second | | | | 160% | Close Return (R.D+1), figd
Standard (R.D+1.5), all type | 16 | | The same | | | | | | | | | ALC: UNITED BY | | | | Used | Standard (R/D×1), Breader
Long-radius (R/D×1.5), Bve | d | | DE EPHONE | | THE REAL PROPERTY. | - | | | | | | Lane of the o | | | | an . | Standard (R/D=1), flanged | or welded | | And the second | SECTION AND DESCRIPTION DE | No. of Lot | 100000 | Marie Land | 2 | 30120 | | 2 | 2 | | | 16 | Flow- | Stub-in type branch
Threaded | | | | | Contract of the last la | | Control of the last | | | | NEW SAIL | ALCOHOL: N | | | | thru | Flanged or Welded | - 1 | | | 2 | STATE OF THE OWNER. | - | BERN LINE | 2 | 4 | 100.6 | | 100 | | | _ | Tes | Stub-in tipe branch
Full line size, Beta+1.0 | _ | | | | Contract of the last | | | - 4 | | | ACCRECATE VALUE OF | | | | | Gets. Balt
or Plug | Reduced trim, Beta=0.9 | | | | 1000 | | - | | Total Control | | | | | | | | Globe, stand | Reduced trim, Bets 40 8
and | | | | | | | Control of the | | | | | | | | 105 | Globe - (Ang | is or Y-type) or Disphragm (| dem type). * | | | | | | | NO OIL | | | 10000 | | | | | Buterfy | Lift - min vel (Na)= 35 (dur | ta (6/63)*5 | | | | | - | | | | | | | | | | Check | Swing - min vel (f/s)= 40/to | tens (b/ft3)*.5 | | | | | | | 100 | | | | ALCOHOL: N | | | | Pipe Entranc | Tilang-disk
eEst7(0=none,1=entr, 2=e | et,3-both) | | | | | | 1 | | 1 | | 7 | Partie State | | | her | Swage to Diam
Onfice Diam | ameter (at end) | in in | | 4 800 | | | | | | | | DECKU | | | | 1 | Inital Swage | tag Diameter | - | | | | 1 | | - | | The second | | | | | | | Other Prese | ure Drop (Equip, etc.)
Pressure Drop (Equip, etc.) | 8 fund
gowyan 5 | 0.000 | 0.064 | | The second | | ACCRECATE OF THE PARTY. | | | | No. | | | | | Value Cv (No | in-flashing liquid only?) | gompe^5 | | | | | | | | | COLUMN 1 | 1 COPA | 100000 | | | _ | | us Flow Resistence
e mass Offvolume basis) | K factor | | | | | | | | | | 1000000 | | | | uld | Danaity | 7,000 | gom
ISR3 | Charles of the last las | | | | 100000 | | | | April 10 | - | | | | | Viscosity | | cP | | in the Land | | THE REAL PROPERTY. | | | Notice Labor | | Access to the | Control Control | THE PERSON NAMED IN | | | _ | Surface Yen
Flow Rate | sion (2 phase only) | dynetm | 2,535 | 2,535 | 8,060 | 3.902 | 3,502 | 1,502 | 1,751 | 1,567 | 1,567 | 1,587 | 1,045 | | | | Density OR a | McZaT Density | 15/63 | THE RESERVE | | THE R. LEWIS CO., LANSING | 2002 | 3/302 | | ETPO INTERNATIO | ECONOMIC SOCIETY. | 1,001 | 100 | No. of Concession, Name of Street, or other Designation, Name of Street, or other Designation, Name of Street, Online | | | por | | Z | | 20.14 | 0.846 | 26 14
0.986 | 29.14
0.986 | 29 14
0 588 | 29.14 | 29.14 | 29.14 | 29.14 | 29.14
6 966 | 29 14 | 1 1 | | | Marri Marria | Temp | F | 115.0 | 0 84E
11510 | 115.0 | 0 MAG
1950 | 115.0 | 115.0 | 1150 | 115.0 |
1150 | 115.0 | 115.0 | 1 1 | | 4 Interne | Wepor Vision
al Diameter | | (a) | 4 026 | 6.065 | 6.005 | 6,065 | 23 250 | 6 065 | 6.065 | 6.565 | 23 250 | 6 565 | 6 565 | 1 | | /Holdus | Plow rate | Methods | lohr | DUNHUGH | DUATHUSA | DURNHUSA | DukHush | DukHugh | DukHugh | DukHugh | DukiHugh | DUNHUSH | DUMHugh | DUXHugh | 1 | | | Flow rate | | gpn
gpn | 0.0 | 0.0 | 0.0 | 0.0 | 00 | 0.0 | 0.0 | 0.0 | 0.0 | 00 | 00 | 1 1 | | puid | Density
Vectority | | 8/63 | 0.00 | 0.00 | 0.00 | 000 | 0.00 | 0.00 | 0.00 | 000 | 000 | 0.00 | 0.00 | | | | Surface Ten | sion (2 phase only) | dynaftm | 0 00
2535 | 0.00
2535 | 9 00 | 9502 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
1545 | | | por | Flow Rate
Vapor Vacor | alty | lb/r | 2535 | 2535 | 0.009 | 9.009 | 3502
0.009 | 3502 | 0.009 | 1567 | 1587 | 1567 | 0,009 | 1 | | | Segment Av | erage Pressure | peig | 0.00 | 0.07 | 0.26 | 0.41 | 0.45 | 0.64 | 0.86 | 0.37 | 0.38 | 0.44 | 051 | | | _ | Vapor Densi | | IbA3 | 0.0647 | 0.0650 | 0.0659 | 0.0006 | 0.0659 | 0.0677 | 0.0688 | 0.0665 | 0.0665 | 0.0666 | 0.0671 | 1 | | | Bulk Density
Pipe Flow Ar | | 12 | 0.0884 | 0.07 | 0.07 | 0.07 | 2 9483 | 0.07 | 0.07 | 0.97 | 0.07
2.9483 | 0.07 | 0.07 | 1 1 | | W W | Bulk Wilcolly | | 55.60 | 123.13 | 53.96 | 106 50 | 72.76 | 4.94 | 71.57 | 35.23 | 32.66 | 2.22 | 32.50 | 21.56 | 1 1 | | 18- | Average Visc | locity if solids present | fitted
6 | 0.009 | 392 12
0.009 | 389 53
0 009 | 367.38
0.009 | 386.74
0.009 | 384.20
0.009 | 381.23
0.009 | 387.90
0.009 | 387.78
0.009 | 366 97 | 386.00 | 1 1 | | | Elevation Ch. | ange (Outer-inter)
umber (NRe) | | 9.0
4.47E+05 | 0.0 | 6.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1 1 | | | Priction Fact | orf (Colebrook & White) | 0 | 0.0174 | 2.97E+05
0.0170 | 5 93E+05
0.0161 | 4 10E+05
0 0 165 | 1.07E+05
0.0182 | 4.10E+05
0.0165 | 2.05E+05
0.0177 | 1 83E+05
0 0179 | 478E+04
0.0214 | 1.83E+05
0.0179 | 1.22E+09
0.0189 | | | - | K (staight p | (94) | | 9.00 | 0.0170
2.35
0.39 | 0.33 | 0.0165
0.66
0.60 | 0 0182
0 04
0 00 | 6.85 | 276 | 0.35 | 0.04 | 11.32 | 2.35 | 1 | | | M. Ottomore, & o | · edt + sugges + onfeet | - 70 | 9.00 | 0.43 | 0.00 | 0.61 | 0.00 | 1.98 | 061 | 125 | 000 | 101 | 0.01 | | | | K (fittings + s
K (entrance) | | | 0.00 | 3.17 | 0.00 | 0.00 | 0.00 | 9.65 | 0.00
7.75 | 0.00 | 0.00 | 0.00 | 0.00 | | | | K (fittings + s
K (antiunce
K (Macellan | eous Flow Resistance + Val | He CVI | 1.04 | | 2.62
176.26 | 2.39
82.28 | 0.36 | 79.51 | 19 29 | 2.21
16.57 | 0.04
0.08 | 15.27 | 7.20 | 1 1 | | | K (fittings + v
K (entrance
K (Miscellan
Total K
Velocity Hea | eous Flow Resistance + Val
d (Average Density Basis) | # fluid | 1.04
235.63 | 45 25 | | | | 301.8 | | 62.5 | | | | | | | K (fittings + v
K (entrance
K (Miscellan
Total K
Velocity Hea
Equivalent le | eous Flow Resistance + Val
d (Average Density Basis)
ingth | # Nuid | 235.63 | 45 25 | 82.5 | 73.2 | 4.0 | 301.8 | 222.0 | 62.0 | 40 | 431.5 | 192.7 | | | | K (fitings + v
K (entrance
K (Mscellan
Total K **
Velocity Hea
Equivalent le
Upstream P
Available Up | eous Flow Resistance + Val
d (Average Density Basis)
ingth
ressure before CV
steam Control Valve DP | # Kuid
6
peig | 235.63
20.0
8.0 | 45 25
64 4
0.1 | 0.4 | 73.2
8.8 | 0.8 | 0.8 | 0.9 | 0.4 | 6.4 | 0.5 | 8.5 | ien ond a | | ction | K (fitings + v K (entrance K (Miscellan Total K Volocity Heas Equivalent le Upstream P Available Up Segment Up Segment Up | eous Flow Resistance + Val
d (Average Density Basis)
ingth
ressure before CV
stream pressure | Pfield
E
Pfig
pe
per
perg | 235 63
20 0
8.0
0.00 | 45 25
94 4
0.1
0.15 | 82.5
0.4
0.36 | 73.2
8.8
0.45 | 0.8 | 0.83 | 0.90 | 0.38 | 0.38 | 0.50 | 0.52 | crade | | ction | K (fitings + v K (entrance K (Mscellan Total K 1 Velocity Hea Equivalent le Upstream P Available Upstream P Segment Upstre Head Other Press | abus Flow Resistance + Val
d (Average Density Basis)
lingth
ressure before CV
stream Control Valve DP
istream pressure
Pressure Drop
ure Drop (Cour & Allow) | P fluid
E
Deligi
pa-
paig
pa- | 235.63
20.0
8.0 | 45 25
94 4
0.1
0.18
0.00
0.08 | 0.4 | 73.2
6.8 | 0.8 | 0.8 | 0.0 | 0.4 | 0.4 | 0.5 | 0.5 | erage | | ction | K (fittings + v. K (entrance + K (Mscellan Total K Velocity Hea Equivalent is Upstream P. Austable Up Segment Up Static Head Other Press Friction Press | eous Flow Resistance + Val
d (Average Density Basis)
ingth
ressure before CV
steam Control Valve OP
steam pressure
Pressure Drop
ure Drop (Equip & Allow)
isure Drop
isure Drop | Pfield
E
Pfig
pe
per
perg | 235.63
20.0
8.0
0.00
0.00
FVALUE: | 85 25
84 4
8.1
9.15
9.00
9.08
9.06 | 825
9.4
9.36
9.00
9.00
9.00
9.21 | 73.2
8.8
0.45
0.00
0.00
0.00 | 0.45
0.00
0.00
0.00 | 0.83
0.00
0.00
0.00
0.37 | 8.90
0.00
0.00
0.00
0.07 | 0.38
0.00
0.00
0.00 | 8.38
0.00
0.00
0.00 | 8.50
0.00
0.00
0.12 | 0.52
0.00
0.00
0.02 | Lange | | | K (fitings +) K (entance K (Mocellan Total K ** Velocity Hea Equivalent is Superior Upstream Paratable Up Segment Seg | eous Flow Resistance + Val
d (Average Density Basis)
hogh
ressure before CV
steam Control Varve DP
atteam pressure
Pressure Drop
ure Drop (Equip & Allow)
sure Drop
Factor
Pressure Drop | t fuid
t
peig
pei
peig
peig
peige | 235.63
20.0
0.0
0.00
0.00
FVALUE:
0.11
1.57E-02
FVALUE: | 45 25
64 4
6.1
0.18
0.00
0.08
0.06
3.01E-03
0.15 | 82 5
0.4
0.36
0.00
0.00
0.21
1.17E-02
0.21 | 73.2
0.8
0.45
0.00
0.00
0.00
0.00
5.47E-03 | 0.45
0.00
0.00
0.00
2.52E-05
0.00 | 0.83
0.00
0.00
0.37
5.30E-03
0.37 | 0.90
0.00
0.00
0.07
128E-03
0.07 | 0.38
0.00
0.00
0.02
1.10E-03
0.02 | 0.4
0.38
0.00
0.00
0.00
5.10E-06
0.00 | 8.50
0.00
0.00
0.12
1.09E-03
0.12 | 6.52
0.00
0.00
0.00
0.02
4.81E-04
0.02 | 143 on uj 8 | | ction | K (fitings +) K (entaince +) K (Miscellan Total K Velocity Hea Equivalent is Upstream Phanalable Up Segment Up Static Head Other Press Friction Pres Acceleration Total System | aous Flow Resistance + Val
d (Average Censity Basis)
ingth
ressure before CV
stream Control Wive DP
stream pressure
Pressure Drop
was Drop
Factor
Pressure Orop
windteem Pressure CV
windteem Pressure CV | t fluid t geng per peng pen pen pen pen pen pen pen pen | 235.63
20.0
0.0
0.00
0.00
FULLUE:
0.11
1.57E-02 | 85 25
64 4
8.1
9.15
9.00
9.06
9.06
9.06
3.01E-03 | 9.4
9.36
9.00
9.00
9.21
1.17E-02 | 0.45
0.00
0.00
0.00
0.00
5.47E-03 | 0.45
0.00
0.00
0.00
2.52E-05 | 0.83
0.00
0.00
0.37
5.30E-03 | 8.90
0.00
0.00
0.07
1.26E-03 | 0.38
0.00
0.00
0.02
1.10E-03 | 8.4
9.38
9.00
9.00
9.00
5.10E-06 | 0.5
0.00
0.00
0.00
0.12
1.09E-03 | 0.52
0.00
0.00
0.02
4.81E-04 | | | thon | K (fitnigs +) K (snitsrice K (fitnigs +) K (fitnigs +) Velloolly Hea Equivalent le Upstram Pi Austable Up Staft: Head Other Press Fridton Press Fridton Press Segment Up Acealeration Total System Segment Do Austable | aous Piow Resistance + Val
d (Average Censity Basis)
ingth
ressure before CV
stream Control Valve DP
stream pressure
Pressure Drop
Factor
Pressure Drop
Pressure Drop
Winsteam Control Valve DP
er Control Valve DP
er Control Valve DP | E fluid E E E E E E E E E E E E E E E E E E E | 235.63
20.0
0.0
0.00
0.00
FVALUE:
0.11
1.57E-02
FVALUE: | 45 25
64 4
6.1
0.18
0.00
0.08
0.06
3.01E-03
0.15 | 82 5
0.4
0.36
0.00
0.00
0.21
1.17E-02
0.21 | 73.2
0.8
0.45
0.00
0.00
0.00
0.00
5.47E-03 | 0.45
0.00
0.00
0.00
2.52E-05
0.00 | 0.83
0.00
0.00
0.00
0.37
5.30E-0.3
0.37
0.45 | 0.90
0.00
0.00
0.07
126E-03
0.07
6.83 | 0.38
0.00
0.00
0.02
1.10E-03
0.02 | 0.4
0.38
0.00
0.00
0.00
5.10E-06
0.00 | 8.50
0.00
0.00
0.12
1.09E-03
0.12 | 6.52
0.00
0.00
0.00
0.02
4.81E-04
0.02 | | # LENA FACILITY TANK BATTERY VENT LINE DESIGN AND CAPACITY ASSESSMENT | TO: | Marathon Oil | (b) (6) | |-------|---|-----------| | FROM: | Tim Archuleta | | | CC: | Nate Mascarenas, Kendra Meeker | | | DATE: | July 19, 2017 | - | | RE: | Lena Facility- Vent Line Design and Capacity Assessment | | | | | allilling | The US EPA finalized "Standards of Performance for Crude Oil and Natural Gas Facilities for which Construction, Modification or Reconstruction Commenced After September 18, 2015" on June 3, 2016. This regulation has requirements for certifying the design of closed vent systems. An assessment of the closed vent must be performed to determine it is of sufficient design and capacity to ensure that all emissions from storage vessels are routed to the control device or process and have it certified by a qualified professional engineer. This regulation is 40 CFR 40 Subpart 0000a, referred to as the Quad Oa regulation. # Certification for 40 CFR 60.5411a(d): "I certify that the closed vent system design and capacity assessment was prepared under my direction or supervision. I further certify that the closed vent system design and capacity assessment was conducted and this report was prepared pursuant to the requirements of subpart Quad
Oa of 40 CFR part 60. Based on my professional knowledge and experience, and inquiry of personnel involved in the assessment, the certification submitted herein is true, accurate, and complete. I am aware that there are penalties for knowingly submitting false information." ## Purpose: Evaluate the new Lena facility tank battery vent line design to ensure that the Enardo ES-660 thief hatches, which are set at 16 oz/in² will not open during normal operating flow rate scenarios. The normal flow path for the vapor from the storage tanks will be to one flare where the off gas will be combusted to meet Quad Oa regulations. #### Results: Based on the 3D piping model (dated 6/13/17) of the vent system and predicted vapor flow rates, Halker Consulting evaluated the pipe routing from the storage tanks to the flare and calculated the expected pressure drop in the system during the Marathon Oil specified maximum predicted vapor flow rates. The pressure at the outlet of the flare was set at local atmospheric pressure of approximately 13.46 psia. Pressure drop through the piping system from the furthest storage tank to the flare was calculated and found to have a backpressure on the tank battery of 0.49 psig (7.8 oz/in²g). During normal operating conditions the $7.8 \text{ oz/in}^2\text{g}$ pressure should be the highest pressure that the tanks will see and is 49% of the of $16 \text{ oz/in}^2\text{g}$ set pressure of the thief hatch. A flare tip pressure drop of 0.0 oz/in² was used and was based on information provided by Steffes Flare systems for the Air Assist Model 4. The flame arrestor pressure drop used was 0.72 oz/in² and is based on the Enardo sizing program for a 6" Series 8 inline flame arrestor. The total gas flow rate to the flare used was 551 Mscfd, and is based on a condensate flash factor and gas composition provided by Marathon Oil. The gas composition used was the average composition from the February 2017 Clarks Creek (MM) Analysis Summary. Using the same calculation methodology, the total gas flow rate can be increased to 765 Mscfd and stay below the opening pressure of an Enardo ES-660 thief hatch (14.4 oz/in²). This is approximately 1.39 times the normal operating flow. Standard pressure drop "K" value for fittings and valves per Crane Technical Paper 410 were used. The value used for the absolute roughness of steel was 0.00015 ft. *Attached are the tabulated results of the hydraulic calculations #### Disclaimer: This assessment meets the certification requirements of 40 CFR part 60 subpart 0000a. It is the responsibility of *Marathon Oil* to comply with the reporting requirements of this regulation. # **Attachment 1- Hydraulic Calculations** | | | H | vdraulic C | alculations | | | | | | | | - | | |-------------------|---|--|------------------------------------|--------------------------|--|-----------------|-----------------|-----------------|----------------------|-----------------|--|---------------------|--------| | Client | Marathon Ci | | ye were o | Basis / | | | | | | | | | | | Project. | TVCS Ventile | | | Notes -> | | | | | | | | | | | Location:
Unit | Lena Facility | (Within Veronica) | | | | 8" | | | | 40 | | | | | Proj #: | 16039-06 | | Am Pre | | atm | Atter | KO | tal for | Halfof | Half of | | | | | ByChkd | DJF | | Pres Un | | flare Sp | KO | | to KO | turks : | tanks | | | | | RevDate: | Unstream S | 19-Jul-17
egment ID or kno | | EGMENT ID | | н | | J | K | L | | | | | Pressure | Downstream | n Segment ID or I | known pres | psia | | 9 | h | 1 | 3 | R . | | | | | Data | | essure Up or Doe | | | d | d | d | d | d | d | | | | | Holdup Method | d (with mag. 2 or)
(blankwdefault | iank=Dukler, 3=L-M, 4=
2 =Hoghmark,3=L-M | -Begg-Brill, 5-is
1,4-BAB, 5-Ex | othermal) | | | | | | | | | | | | Pipe Rough | ness | | Section 2 | 0,00015 | 0.00015 | 0.00015 | 0.00015 | 0.00015 | 0.00015 | | | | | Pipe | | e Size or Internal
0, std, etc.) Blank | | Inches | 4.000
ski | 8.000 | 24.000
ald | 6.000
std | 6.000
std | 4 000
sld | | | | | | Straight pipe | elength | | 1 6 | 20.0 | 101.2 | 8.0 | 506.6 | 14.9 | 61.0 | | | | | Elev-
ation | Inlet & Outle | | Inlet
Outet | | | | | | | | | | | | | Difference | | Difference | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | 90's | Std (R/D=1), thre
Short Radius (R | | hablas | | | | DOM: | | | | | | | SK Method | 90's | Standard (R/D= | 1.5), all type | 15 | | 2 | | 3 | | 3 | | | | | | | Mitered | 1 weld (90 | deg angle)
deg angle) | | | | | | | | | | | | | The same of | 3 weld (30 | deg angle) | | | | | | | | | | | | Choose type | Plug Valve Brand
Plug Valve Straig | h Flow | | | | | | | | | | | | | 45'9 | Short Radius (R | (D=1), all ty | pes | The state of s | | | | | | | | | | Elbows | 45'1 | Standard (R/D=
Mitered, 1 weld, | | | | | | 2 | P. S. Sand | | | | | | | | Mitered, 2 weld. | 22.5 deg ar | | | | | | | | | | | | | Choose type | Ball Valve Full Po | N | | Cara Maria | Charles and | MACHINES. | | | | | | 1 | | | 180's | Close Return (R
Close Return (R | | | | | | | | | | | | | | 180 | Standard (R/D= | 1.5), all type | 5 | British metals | COMPANY | Contract of | | | I The East | - | | | | | Used | Standard (R/D=
Long-radius (R/I | D=1.5) thre | aded | | | - | | | | 1 | | | | **** | an | Standard (R/D+) | 1), flanged o | | | | - | - | CONTRACTOR OF STREET | HE SHAPE STREET | ST CHES | No. | 1000 | | Tees | Flow- | Stub-in type bran
Threaded | n¢h | | | | | | | | | | | | | thru | Flanged or Weld | | | E-Marine San | 1 | | 2 | | 3 | Designation of the last | | | | | Tee | Stub-in type brain
Full line size, Be | nch
da=1.0 | _ | | | | | | | | | 100 | | | Gate, Ball or Plug | Reduced trim, B | leta=0.9 | | | | | | | | | | | | | Globe, stand |
Reduced trim, 8 | eta=0.8 | | | | | | | | | | | | Valves | Globe - (Ang | le or Y-type) or Di | aphragm (d | fam type) * | | | | | 201 | | | | | | | Butterfly | Lit - min vel (ti | ala SElidan | | | | | | | | | Chicago and Chicago | | | | Check | Swing - min vel | | | | | | | | 1 | | | | | | Day February | Tilting-disk
ce/Exit?(0=none,1 | nante See | 20 52 5 4 10 2 | | | | | | | | | | | | | ameter (at end) | -610_2-61 | in | | 4.000 | | | | 8.500 | | | - | | Other | Orifice Diam | | | in | | | | | | | | | | | UP | | tom Diameter
ure Drop (Equip. | etc) | in
psi | 0.000 | 0.045 | - | | | | | | | | | | Pressure Drop (E | | # Buid | | | | | | | | | | | | Miscellaneo | n-fashing liquid us Flow Resistan | onlyr)
ICB | gomps? 5
K factor | | | | | | | | | | | | Flow (provid | e mass OR volum | e basis) | lb/hr | | | | | | ILL STREET | | ARTHUR DE | | | Liquid | Density | | | gpm
b/t3 | | | | | | | | | | | | Viscosity | | | cP | | | | | Chicago and C | | | | | | | Flow Rate | sion (2 phase on | 3) | dyne/cm
lb/hr | 1,763 | 1,763 | 1,763 | 1,763 | 882 | 882 | | | | | | Density on | | Density | 10/83 | | | | Section 1 | | | | | | | Vapor | | | 2WV | | 29.14
0.994 | 29.14 | 29.14
0.994 | 29.14 | 29.14 | 29.14 | | | - | | | 200 | | Temp | The same of | 115.0 | 115.0 | 115.0 | 115.0 | 115.0 | 115.0 | | | | | Pipe interne | Vapor Visco | sity | | CP in | 2010 | 6.065 | 23.250 | 6.065 | 6.065 | 4.026 | 17 1 1 1 1 1 | | | | | p Calculation | Methods | | | DukHugh | DukiHugh | DukHugh | DukHugh | DukHugh | DukHugh | | | | | | Flow rate
Flow rate | | | lb/hr | | 0 | 0 | 0 | 0 | 0 | | | | | Liquid | Density | | | gpm
lb/83 | 0.0 | 0.00 | 0.0 | 0.00 | 0.00 | 0.00 | | | | | | Viscosity | rian (2 character) | | cP | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | | | Flow Rate | sion (2 phase on | E | dyneicm | 0.00
1763 | 1763 | 1763 | 1763 | 882 | 882 | | | | | Vapor | Vapor Visco | | | ¢P | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | | | | | | Vapor Densi | trage Pressure | | ps ig
15/93 | 0.04 | 0.12 | 0.17 | 0.0653 | 0.38 | 0.0660 | | | | | | Bulk Density | | | 6/13 | 0.06 | 0.06 | 0.0646 | 0.0653 | 0.0656 | 0.0660 | | | | | | Pipe Flow A | 88 | | 12 | 0.0884 | 0.2006 | 2.9483 | 0.2006 | 0.2006 | 0.0884 | | | | | Flow | Bulk Velocity
Erosional Ve | locity if solids pre | nect | ft/sec | 86.39
394.85 | 37.83 | 2.56
392.91 | 37,40
391,39 | 18.55
389.86 | 41.95
389.12 | | | | | Para- | Average Visi | osity | | cp | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | | | | | meters | | ange (Outlet-Inlet
umber (NRe) |) | t | 0.0
2.71E+05 | 0.0
1.80E+05 | 0.0
4.69E+04 | 0.0
1.80E+05 | 8.99E+04 | 0.0
1.35E+05 | | | | | | Friction Fact | orf (Colebrook & | White) | | 0.0181 | 0.0179 | 0.0215 | 0.0179 | 0.0198 | 0.0193 | | | | | | K (straight p
K (fittings +) | pe) | | | 1.08 | 3.59 | 0.09 | 17.97 | 0.58 | 3.52 | | | | | | K (entrance | exit + swages + | | | 0.00 | 1.04 | 0.00 | 1.01 | 0.00 | 0.31 | | | | | Friction | | eous Flow Resist | | ve Cvj | 0.00 | 0.00
5.44 | 0.00 | 0.00 | 0.00 | 0.00 | | | | | | | d (Average Densi | ty Basis) | f fluid | 115.97 | 22.24 | 0.09 | 21.50 | 5.35 | 8.06
27.34 | | | | | | Equivalent le | ingth | | | 25.0 | 153.3 | 8.0 | 606.1 | 38.9 | 139.7 | | | | | | | ressure before Ch | | psig | II. | 0.1697 | 0.1697 | 0.38183 | 0.38556 | 0,487 | <0 | 7.8 | oz inż | | | | stream Control V
stream pressure | | psig | | 0.17 | 0.17 | 0.38 | 0.39 | 0.49 | | 49% | | | TOTAL. | Static Head | Pressure Drop | | psi | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | | | A SUPPLEY PROBLE | ure Drop (Equip & | (Andrea) | ps: | 0.00 | 0.05 | 0.00 | 0.00 | 0.00 | 0.00 | | | 1 | | | Friction Pres | | | | | 1.47E-03 | 6.75E-06 | 1.43E-03 | 3.53E-04 | 1.80E-03 | | 1 | 1 | | | Friction Pres
Acceleration | Factor | | | 7.66E-03 | | | | | | | | | | | Friction Pres
Acceleration
Total System | Factor
Pressure Drop | before C.V | pai | 0.07 | 0.10 | 0.00 | 0.21 | 0.00 | 0.10 | | 1 | 1 | | | Friction Pres
Acceleration
Total System
Segment Do
Available Do | Factor
Pressure Drop
winstream Pressuresteam Control | | paig
paig | 0.07
0.00 | 0.10 | 0.00 | 0.17 | 0.38 | 0.39 | | | | | | Friction Pres
Acceleration
Total System
Segment Do
Available Do | Factor
Pressure Drop
winstream Pres. | | pei
peig | 0.07
0.00 | 0.10 | 0.00 | | | | | | | # VERONICA FACILITY TANK BATTERY VENT LINE DESIGN AND CAPACITY ASSESSMENT | | ACCULTON- | |---|---| | Marathon Oil | (b) (6) | | John Van Pelt | | | Tim Archuleta, Nate Mascarenas, Kendra Meeker | | | June 12, 2017 | | | Veronica Facility- Vent Line Design and Capacity Assessment | | | | John Van Pelt Tim Archuleta, Nate Mascarenas, Kendra Meeker June 12, 2017 | The US EPA finalized "Standards of Performance for Crude Oil and Natural Gas Facilities for which Construction, Modification or Reconstruction Commenced After September 18, 2015" on June 3, 2016. This regulation has requirements for certifying the design of closed vent systems. An assessment of the closed vent must be performed to determine it is of sufficient design and capacity to ensure that all emissions from storage vessels are routed to the control device or process and have it certified by a qualified professional engineer. This regulation is 40 CFR 40 Subpart OOOOa, referred to as the Quad Oa regulation. # Certification for 40 CFR 60.5411a(d): "I certify that the closed vent system design and capacity assessment was prepared under my direction or supervision. I further certify that the closed vent system design and capacity assessment was conducted and this report was prepared pursuant to the requirements of subpart Quad Oa of 40 CFR part 60. Based on my professional knowledge and experience, and inquiry of personnel involved in the assessment, the certification submitted herein is true, accurate, and complete. I am aware that there are penalties for knowingly submitting false information." ### Purpose: Evaluate the new Veronica facility tank battery vent line design to ensure that the Enardo ES-660 thief hatches, which are set at 16 oz/in² will not open during normal operating flow rate scenarios. The normal flow path for the vapor from the storage tanks will be to one flare where the off gas will be combusted to meet Quad Oa regulations. # Results: Based on the 3D model of the vent system and predicted vapor flow rates, Halker Consulting evaluated the pipe routing from the storage tanks to the flare and calculated the expected pressure drop in the system during the Marathon Oil specified maximum predicted vapor flow rates. The pressure at the outlet of the flare was set at local atmospheric pressure of approximately 13.46 psia. Pressure drop through the piping system from the furthest storage tank to the flare was calculated and found to have a backpressure on the tank battery of 0.72 psig (11.5 oz/in²g). During normal operating conditions the $11.5 \text{ oz/in}^2\text{g}$ pressure should be the highest pressure that the tanks will see and is 72% of the of $16 \text{ oz/in}^2\text{g}$ set pressure of the thief hatch. A flare tip pressure drop of 0.0 oz/in² was used and was based on information provided by Steffes Flare systems for the Air Assist Model 4. The flame arrestor pressure drop used was 1.45 oz/in² and is based on the Enardo sizing program for a 4" Series 8 inline flame arrestor. The total gas flow rate to the flare used was 328 mscfd (1049 lb/hr), and is based on a condensate flash factor and gas composition provided by Marathon Oil. The gas composition used was the average composition from the February 2017 Clarks Creek (MM) Analysis Summary. Credit was taken for the VRT thereby reducing the amount of flashed gas that was calculated using the provided flash gas factor. Using the same calculation methodology, the total gas flow rate can be increased to 371 MSCFD (1187 lb/hr) and stay below the opening pressure of an Enardo ES-660 thief hatch (14.4 oz/in²). This is approximately 1.13 times the normal operating flow. Standard pressure drop "K" value for fittings and valves per Crane Technical Paper 410 were used. The value used for the absolute roughness of steel was 0.00015 ft. *Attached are the tabulated results of the hydraulic calculations #### Disclaimer: This assessment meets the certification requirements of 40 CFR part 60 subpart 0000a. It is the responsibility of *Marathon Oil* to comply with the reporting requirements of this regulation. **Attachment 1- Hydraulic Calculations** | | | H | tydraulic C | alculations | | | - | | | | | | | | |-------------------|-------------------------------|--|---------------------------------|--------------------------|--------------------|--------------------|--------------------|-------------------------|--------------------|---------------------|--------------------|--------------------|------|--------| | Client: | Marethon Or | | | Basis / | Para la | | | | | | | | | | | Project. | TVC\$ Ventile | | | Notes → | 7 | | 5 | 4 | . 3 | 2 | 1 | <= segment | | | | Location:
Unit | Veronica Fac | nety | | | * | 4" | .6" | | 6" | 4" | 4" | | | | | Proj #: | 18039-06 | | | 13.46 | atm | After | Outlet | КО | Before | full flow | Halfof | | | | | ByChk'd | MP | | Pres Uni | pola
EGMENT ID | flare fip | ко | ofKO | | KO Drum | to KO | tanks
M | | | | | RevDate: | Upsteam 5 | 6-Jun-17
egment ID or kno | | pois | G | H | - | , | K | L | - 86 | | | _ | | Pressure | Downstream | n Segment ID or | known press | pela | | g | h | 1 | 1 | k | 1 | | | | | Data | | essure Up or Do | | | d | d | d | d | d | d | d | | | | | Holdup Meth | (blank/default | Senio-Duktor 34, 40, 4
2 HHughmark, 34L-8 | M 4+848 5+Ea | ion) | | 2010 | | | - | 100 | | | | | | | Pipe Rough | ness |
 | 8 86015 | 0.00015 | 0.00015 | 0.00015 | 0.00015 | 0.00015 | 0.00015 | | | | | Pipe | Nominal Lie
Schedule /4 | e Size or Internal
0, std, etc.) Blank | Diameter | Inches. | 4 000
ski | 4.000 | 6.000 | 24.000
40d | 6.000 | 4.000 | 4.000
abd | - | | | | | Straight pipe | length | | 1 8 | | std
166.6 | 7.8 | 81d
8.0 | 7.8 | 51d
301.9 | 195,4 | | | | | Elev-
ation | Inlet & Outle
OR | | Outel | | | | 1150 | | 701/2011/20 | TO A COLUMN | | | | | | eeon | Difference | (Outlet - Inlet) | Difference | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | 80,8 | Std (R.D=1), thr | | | | | 11 51 54 | | 1 | | | | | | | 3K Method | 90% | Short Radius (F. Standard (R.D. | 1.5), all type | s eloed | | | 2 | 200 | 100 | 5 | 2 | | | | | | | | 1 weld (90 | deg angle) | | | | | 10000 | F2000 | 1945 | 100 | 1 | | | | | Miered | 2 weld (45 | deg angle)
deg angle) | | | | | | (C) - (C) | | - | | | | | Choose type | Plug Valve Bran | ch Flow | ord and of | 10000 | 5 - 115 | | 777.7 | Trace. | 14/00/201 | | | | | | | Choose type | Plug Valve Straig | ght Thru | | | | | | | 17 10 10 10 | | | | | | Elbows 1 | 45% | Short Radius (F.D. | 1.5), all type | pes
4 | | | | | - | | - | | _ | | | | | Mitered, 1 weld. | .45 deg angl | ie . | 200 | 400 | | | | STATE OF THE PARTY. | | | | | | | Choose he d | Mitered, 2 weld,
Sall Valve Full P | 22.5 deg an | gle | | - | | 10 | | 2000 | | | | | | | | Close Return (F | R/D=1), three | | | | | THE U.S. | 1990 | | | | | | | | 180's | Close Return (F
Standard (R/D+ | RO+1), figd/4 | welded | | | | - | 1000000 | | 1-1-1 | | | | | | Used | Standard (RIO» | 1.5), all type:
1), threaded | 9 | | | | | 2200 | | | | | | | | 25 | Long-radius (R) | (D+1.5), three | | | - | | | | | | THE REAL PROPERTY. | | | | Tees | Elbow | Standard (R/D+
Stub-in type bra | 1), flanged o | ir welded | | | | | 1 | 1 | 2 | | | - | | | Flow- | Threaded | | | | | | | Legacon and | ALC: N | 1000 | | | | | | thru | Flanged or Well | ded | | | | 1 | | The lates | 2 | -11 | 1000 | | | | | Gate, Balt | Stub-in type bra | eta=1.0 | _ | | | | | 1 | | 1 | | | | | | or Plug | Reduced trim, 8 | Beta=0.9 | | | | 2 2 2 2 3 3 | | | 100 | 1-72 | | | | | | Globe, stanc | Reduced birm, 8 | Beta=0.8 | | | | | | 100 | | | | _ | | | Valves | | le or Y-type) or D | Xaphragm (d | am type) * | 7 | | | | | | | | | | | | Bulterfly | Lift - min vol (ft | Die Western | | | | | | 75.55 | | - | | | | | | Check | Swing - min vel | (8/s)= 40/(de | ns (0/83)*.5 | | | | | | | 1 | | | | | | | Tilting-disk | | | | | | | | | | | | | | | Pipe Entrand | ce/Exit?(0=none,)
ameter (at end) | 1=entr_2=ex | | | | 4 000 | | 2 | 6,000 | 1 | | | | | Other | Orifice Diam | eter | | in in | | | 2.000 | | | | | | | | | DP | Initial Swage | Inm Diameter
ure Drop (Equip. | | | 0.000 | 0.091 | | | | | - | | | | | | | Pressure Drop (E | | f fluid | 0.000 | 0.001 | | | | | | | | | | | Valve Cv (No | n-fashing liquid | only) | gomber 5
K factor | | | | | | | | | | | | | | us Flow Resistar
e mass OR volum | | K factor | | | | | - | | | | | | | Liquid | | Times City (1910) | | gpm | - | | | 200 | | | | 111 | | | | | Density | | | B/R3 | - | | | | | - | | | | | | | Surface Ten | sion (2 phase on | nly) | dyne/cm | | | 1777 | TO SEASON | 1000 | | | THE RES | | | | | Flow Rate
Density OR I | | Density | lb/hr
lb/83 | 1049,42 | 1049.42 | 1049.42 | 1049.42 | 1049.42 | 1049.42 | 524.71 | | | | | Vapor | Density OR I | W.Zai | MW | ID/RJ | 29.14 | 29.14 | 29.14 | 29.14 | 29.14 | 29.14 | 20.14 | | | - | | 2.4 | | | 2 | | 0.994 | 29.14
0.994 | 0.994 | 29.14
0.994
115.0 | 29,14
0.994 | 29.14
0.994 | 29.14
0.954 | | | | | | Vapor Viscor | ilv | Temp | di di | 115.0 | 115.0 | 115.0 | 0.010 | 115.0 | 0010 | 115.0 | | | | | Pipe Interne | al Diameter | - | | in | 4.026 | 4.026 | 6.065 | 23.250 | 6.065 | 4.026 | 4.026 | | | | | DP / Holdus | Calculation | Wethods | | | DukHugh | DukHugh | DukiHugh | DukHugh | DukHugh | DukHugh | DukHugh | | | | | | Flow rate
Flow rate | | | gpm | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | Liquid | Density | | | gpm
lb/83 | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | | | Macosity
Surface Ten | sion (2 phase on | nike. | dyne.km | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | | | Flow Rate | | | Buthr | 1049 | 1049 | 1049 | 1049 | 1049 | 1049 | 525 | | | | | Vapor | Vapor Viscos | | | op
make | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | | _ | | | | Vapor Densi | erage Pressure
by (Aug.) | | psig
Ib/R3 | | 0.13 | 0.0652 | 0.0652 | 0.0653 | 0.45 | 0.0672 | | | | | | Bulk Density | | • | 643 | 0.06 | 0.08 | 0.07 | 0.07 | 0.07 | 0.007 | 0.007 | | | | | | Pipe Flow A | ea | | 62 | 0.0884 | 0.0884 | 0.2006 | 2 9 4 8 3 | 0.2006 | 0.0884 | 0.0884 | | | | | Flow | Bulk Velocity | | | t/sec | 51.55
395.38 | 51.05
393.46 | 22.27
391.53 | 1,52
391,48 | 22.26
391.44 | 49.87
388.88 | 24.54
385.83 | | - | 1 | | Para- | Average Visc | elocity if solids properly | a and | #/sec | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | | | | | | Elevation Ch | ange (Outlet-Inlet | 0 | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | meters | Friction Fact | imber (NRe)
or f (Colebrook I | L WASH | | 1.61E+05
0.0190 | 1.61E+05
0.0190 | 1.07E+05
0.0193 | 2.79E+04
0.0241 | 1.07E+05
0.0193 | 1.61E+05
0.0190 | 8.06E+04
0.0207 | | | | | | K (straight p | pe) | | | 0.00 | 9.42 | 0.30 | 0.10 | 0.50 | 17.06 | 12.14 | | | | | | K (fittings + s | | a selford | | 0.00 | 0.00 | 1.04 | 0.00 | 1.02 | 0.31 | 6.48
0.61 | | | | | Friction | K (Miscellan | eas - swages -
eous Flow Resis | stance + Valv | e CV) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | | | Total K | | | | 0.00 | 9.42 | 2.01 | 0.10 | 1.46 | 20.12 | 19.23 | | | | | | Velocity Hea
Equivalent le | d (Average Dens
Ingth | ruk grazie) | # fluid | 4129 | 40.50
166.6 | 7.71
52.7 | 8.0 | 7.70 | 38.64
355.9 | 9.36 | | | | | | | ressure before C | v | pelg | - | 0.2622 | 0.2692 | 0.2692 | 0.27430 | 0.53224 | 0.716 | 61 | 11.5 | og.in2 | | | Available Up | stream Control V | Valve DP | pai | | | | | | - | | | | 1 | | TOTAL | Segment Up | steam pressure | | peig | 0.00 | 0.26 | 0.27 | 0.27 | 0.27 | 0.63 | 0.72 | | | 1 | | TOTAL | | Pressure Drop
ure Drop (Equip | & Allow) | psi | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | | | Friction Pres | sure Drop | | pe | 0.00 | 0.17 | 0.01 | 0.00 | 0.01 | 0.36 | 0.08 | | | | | | Acceleration | Factor
Pressure Drop | | | 2.73E-03
0.00 | 2 67E-03
0 26 | 5 09E-04
0.01 | 2 36E-06
0.00 | 5.08E-04
0.01 | 2.55E-03
0.36 | 6.18E-04
0.08 | | | 1 | | | Segment Do | wastream Pres | before C.V. | paig | 0.00 | 0.00 | 0.26 | 0.00 | 0.01 | 0.30 | 0.63 | | | | | | Available Do | winstream Contri | di Valve DP | pelg | | 2000 | | | | | | | | | | | Pressure at
Error Status | er Control Valve | | peig | 0,0000
OK | 0,0000
CK | 0.2622
OK | 0.2692
CK | 0.2692
CK | 0.2743
CK | 0.6322
CK | | | 1 | | | Cities annual | | | | - Con | | | | | - | - | | _ | - | Sherman USA Pad # SHERMAN USA CTB VENT LINE DESIGN AND CAPACITY ASSESSMENT Matter | | | Sapo Licano | |-------|--|-------------| | TO: | Marathon Oil | (b) (6) | | FROM: | Tim Archuleta | | | CC: | Nate Mascarenas, Kendra Meeker | | | DATE: | July 12, 2017 | | | RE: | Sherman USA CTB - Vent Line Design and Capacity Assessment | | The US EPA finalized "Standards of Performance for Crude Oil and Natural Gas Facilities for which Construction, Modification or Reconstruction Commenced After September 18, 2015" on June 3, 2016. This regulation has requirements for certifying the design of closed vent systems. An assessment of the closed vent must be performed to determine it is of sufficient design and capacity to ensure that all emissions from storage vessels are routed to the control device or process and have it certified by a qualified professional engineer. This regulation is 40 CFR 40 Subpart 0000a, referred to as the Quad Oa regulation. # Certification for 40 CFR 60.5411a(d): "I certify that the closed vent system design and capacity assessment was prepared under my direction or supervision. I further certify that the closed vent system design and capacity assessment was conducted and this report was prepared pursuant to the requirements of subpart Quad Oa of 40 CFR part 60. Based on my professional knowledge and experience, and inquiry of personnel involved in the assessment, the certification submitted herein is true, accurate, and complete. I am aware that there are penalties for knowingly submitting false information." ## Purpose: Evaluate the new Sherman USA CTB vent line design to ensure that the Enardo ES-660 thief hatches, which are set at 16 oz/in², will not open during normal operating flow rate scenarios. The normal flow path for the vapor from the storage tanks will be to one flare where the off gas will be combusted to meet Quad Oa regulations. ### Results: Based on the vent system 3D model (dated 7-10-2017) and predicted vapor flow rates, Halker Consulting evaluated the pipe routing from the storage tanks to the flare and calculated the expected pressure drop in the system during the Marathon Oil specified maximum predicted vapor flow rates. The pressure at the outlet of the flare was set at local atmospheric pressure of 13.5 psia. Pressure drop through the piping system from the furthest storage tank to the flare was calculated and found to have a backpressure on the tank battery of 0.52 psig $(8.3 \text{ oz/in}^2\text{g})$. During normal operating conditions the $8.3 \text{ oz/in}^2\text{g}$ pressure should be the highest pressure that the tanks will see and is 52% of the of $16 \text{ oz/in}^2\text{g}$ set pressure of the thief hatch. A flare tip pressure drop of 0.0 oz/in² was used and was based on information provided by
Steffes Flare systems for the Air Assist Model 4. The flame arrestor pressure drop used was 0.34 oz/in² and is based on the Enardo sizing program for a 6" Series 8 inline flame arrestor. The total gas flow rate to the flare used was 345 Mscfd (1,103 lb/hr), and is based on a condensate flash factor and gas composition provided by Marathon Oil. The gas composition used was the average composition from the February 2017 Clarks Creek (MM) Analysis Summary. Credit was taken for the VRT thereby reducing the amount of flashed gas that was calculated using the provided flash gas factor. Using the same calculation methodology, the total gas flow rate can be increased to approximately 462 Mscfd (1,480 lb/hr) and stay at or below the opening pressure of an Enardo ES-660 thief hatch (14.4 oz/in²). This is approximately 1.3 times the normal operating flow. Standard pressure drop "K" value for fittings and valves per Crane Technical Paper 410 were used. The value used for the absolute roughness of steel was 0.00015 ft. *Attached are the tabulated results of the hydraulic calculations #### Disclaimer: This assessment meets the certification requirements of 40 CFR part 60 subpart 0000a. It is the responsibility of *Marathon Oil* to comply with the reporting requirements of this regulation. Attachment 1 - Normal Flow Hydraulic Calculations | | | H | ydraulic C | alculations | | | | | | | | | 1 37 | |----------------------------|--------------------------------|--|--------------------------------|--------------------------|--|-------------------------|------------------------|------------------|------------------------------------|----------------------|-------------------|------------------|------------| | Client | Marsthon Oil | | | Basis / | | | | | | 1 | - 3 | | | | Project:
Location: | Sherman Fa | | | Notes -> | | 7 | . 6 | | | 3 | 2 | 1 | es segmen | | Jnit
Proj #: | TVCS Norma | i Flow Calculatio | Aim Pres | 135 | 4" abn | Delining. | DUBM of KO | Ontarion. | 54" | 6"
Upsteam | 2 | 4"
Half of | | | BYCNKE | | | Pres Uni | | fore Sp | CHESTON | COURT OF NO | Copper of AC | Drum | of KO | Upstream
of KO | tenks | | | RevDate: | | 12-Jul-17 | | EGMENT ID | 6 | Н | | 3 | K | L | М | N | | | Pressure | | egment ID or kno
s Segment ID or k | | pela | 13.50 | G | H | The second | 3 | K | - | н | | | Data | is known pr | issure Up or Dov | vnstream (U | or D)? | d | d | d | 8 | 0 | d | d | d | | | Fric Method
Holdup Meth | (blank=default, | tenin-Dukter, SHL-M, e-
2 => kughererik, SHL-M | 6+99-8+8.5+5
4+080.5+6s | othernel)
(ton) | | | | | | | | | | | | Pipe Rough | ness | | THE RESERVE | 0.00015 | 0.00015 | 0.00015 | 0,00015 | 0.00015 | 0.00015 | 0.00015 | 0.00015 | - | | Pipe | Schedule (4 | e Size or Internal
0, std, etc.) Blank | | Inches | 4.000
ald
15.0 | 000.0
bte | 4.000
std | 8.000
s/d | 24.000
etd | 8.000
std
10.0 | 4.000
sMd | 4 000
std | | | Elex | Streight pipe
intet & Outle | length | Inlet | | 15.0 | 93d
128.0 | 1.0 | 5 0 | 8.0 | 10.0 | 267.0 | 148.0 | | | ation | OR | | Outlet | - | | | and the same of | | | | | | | | | Difference
90's | (Outlet - Inlet)
Std (P.D=1), the | Difference | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | 3K Method | 90's | Short Radius (R | MD=1), figdA | welded | | | | | | - | | | | | an meerod | 905 | Standard (R/D= | 1 weld (90 | deg angle) | | - | | 1 | | 1 | | 3 | | | | | Mitered | 2 weld (45 | deg angle)
deg angle) | | | | | | | | | | | | Choose type | Plug Valve Brand | oh Flow | org angle) | | | | | | | | | | | | Choose type | Plug Valve Brand
Plug Valve Straig
Short Radius (R | (O=1), all te | pes | | | | Marketon and | | | | | | | Elbows . | 45% | Standard (R/D+ | 1.5), all type | 5 | | 1 | | | The same | | DESTRUCTION OF | | | | | | Miered, 1 weld,
Miered, 2 weld,
Ball Valve Full Po | 22.5 deg and | ngle | | | | | | | | | - | | | Choose type | Close Return (R | Off | haha | | Contract of | - | | | | | | | | | 180's | Close Return (R | UD=1), figd/ | welded | | 1 | 1 mars 2 mg | No. S. Est | - | The Control | | | - | | | 180
Used | Standard (R/D=
Standard (R/D= | 1.5), all type
1), threaded | 9 | Charles and the Control of Contr | No. | | | | | | | - | | | 85 | Long-radius (RI | D+1.5), thre | aded | | | No. | | | | Name of the least | | | | Tees | an
Elbow | Standard (R/D+
Stub-in type bra | nch | weiged | BACT STATE OF O | | | Marie Street | | 1 | | 2 | 1 | | | Flow- | Threaded
Flanged or Weld | ted | | The second second | - | | | | | | 6 | | | | Tee | Stub-in type bra | nch | | The second | | | | | | | | | | | Gate, Ball | Full line size, Be
Reduced trim, B | | | | | | | | | 1 | 1 | I Company | | | or Plug
Globe, stand | Reduced trim, 8 | leta=0.8 | | The State of S | Part of | The SHADE | | - | | | | | | Valves | Globe - (Ang | te or Y-type) or Di | laphragm (d | tam type) | | | | | | To the same of | THE RESERVE OF | | - 17 | | | Butterty | Lift -min vel (fi | Nie 35 Edan | a INSTANCE | | | Discussion of the last | | | | ET ALEX | Total State of | No. of Lot | | | Check | Swing - min vel | | | | | | | | | and the same of | 1 | | | | Pipe Entran | Titing-disk
te Ext?(0=none,1 | -entr_2-en | et3=both) | | | | | | 1 | | 1 | - | | 00.44 | Swage to Di | ameter (at end) | | in | | 4.000 | 6.000 | 4.000 | 6.000 | | 8.000 | | | | Db
Other | Orifice Diam
Initial Swage | ton Diameter | | in
in | | | | | | | | 2000 | | | | Other Press | ure Drop (Equip.)
Pressure Drop (E | etc) | # Buid | 0.000 | 0.021 | | | | | | | | | | Valve Cv (No | in-flashing liquid | only) | gpresipar* 5 | Service of the least lea | | | | 1000 | | - | | | | | | us Flow Resistar
e mass OR volum | | K fector | | | | | | | | APL AND | | | Liquid | Density | | | gpm
8A3 | | | | | | Version 1 | | | | | | Viscosity | | | cP. | | | | | | | | | | | | Surface Ten
Flow Rate | sion (2 phase on | 70 | dynalon | 1104.08 | 1104.58 | 1104.58 | 1104,08 | 1104.08 | 1104.08 | 1104.08 | 552.04 | | | tion. | Density OR | MUZAT " | Density | 613 | SCHOOL STREET | A Robbinson Co. | | ALC: UNKNOWN | THE RESERVE OF THE PERSON NAMED IN | | | | | | Vepor | | | Z | | 20.14
0.994 | 29.14
0.964
115.0 | 29.14
0.994 | 29.14
0.994 | 29.14
0.994 | 29.14
0.994 | 29,14
0.994 | 29.14
0.994 | | | | Vapor Visco | Ob | Temp | F | 115.0 | 115.0 | 0.010 | 0.010 | 0.010 | 115.0 | 0.010 | 0.010 | | | | al Diameter | | | in | 4.026 | 6.065 | 4.026 | 6.065 | 23.250 | 6.065 | 4.028 | 4.026 | | | DP / Holdu | Flow rate | Methods | | BA: | DukHugh | DukHugh | DukHugh | DukHugh | DukHigh | DukHugh | DukHugh | DukHugh | | | | Flow rate | | | gpm
(#d | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | Liquid | Density
Viscosity | | | 60 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | Surface Ten | sion (2 phase on | ly) | dyne/cm | 0.00 | 1104 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | Vapor | Flow Rate
Vapor Visco | | | Ibhr
cP | 1104
0.010 | 0.010 | 0.010 | 0.010 | 1104
0.010 | 1104
0.010 | 0.010 | 552
0.010 | | | | | erage Pressure | | psig | 0.01 | 0.04 | 0.07 | 0.07 | 0.08 | 0.08 | 0.26 | 0.48 | | | _ | Vapor Densit | | - | Ib/83 | 0.0642 | 0.0644 | 0.0645 | 0.0645 | 0.0645 | 0.0646 | 0.0654 | 0.0665 | - | | | Pipe Flow A | 68 | | 1/2 | 0.0884 | 0.2006 | 0.0884 | 0.2006 | 2.9483 | 0.2006 | 0.0884 | 0.0884 | | | Flow | Bulk Velocity | locity if solids pr | esent | filtec
filtec | 54.02
394.63 | 23.75 | 53.79
393.76 | 23.69
393.66 | 1.61
393.63 | 23.88
393.80 | 53.03
390.98 | 26.10
387.88 | 1 | | Para- | Average Visi | tosity | • | CP | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | | | meters | | ange (Outlet-Inlet
umber (NRe) | 0 | | 0.0
1.73E+05 | 1.15E+05 | 1.73E+05 | 1.15E+05 | 3.00E+04 | 0.0
1.15E+05 | 0.0
1.73E+05 |
8.66E+04 | | | | | orf (Colebrook & | White) | | 0.0188 | 0.0190 | 0.0188 | 0.0190 | 0.0237 | 0.0190 | 0.0188 | 0.0205 | | | | K (Stings +) | valves) | • | | 0.84 | 0.99 | 0.06 | 0.19 | 0.10 | 0.38 | 16.10 | 9.05
5.83 | | | Friction | K (entrance
K (Macretter | ext - swages +
eous Flow Resis | tance + Vot | e CV | 0.00 | 0.43 | 0.00 | 0.43 | 22.82
0.00 | 0.61 | 0.31 | 0.61 | | | | Total K | eous Flow Resis | | | 0.84 | 8.77 | 0.52 | 9.87
8.72 | 22.92 | 1.24 | 18.23 | 15.49 | | | | Equivalent is | d (Average Densingth | | R fluid | 15.0 | 165.8 | 9.3 | 23.1 | 1874.1 | 8.72
32.8 | 43.70
325.0 | 10.58
253.3 | | | | Upstream P | ressure before C
stream Control V | | polig | 0.0171 | 0.0626 | 0.0731 | 0.0765 | 0.07691 | 0.08172 | 0.44464 | 253.3
0.52 | E3 osig | | | Segment Up | isbeam pressure | | peig | 0.02 | 0.06 | 0.07 | 0.08 | 0.08 | 0.06 | 0.44 | 0.52 | | | TOTAL | Static Head | Pressure Drop
ure Drop (Equip I | | pai
pai | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1 | | | Friction Pres | sure Drop | | psi | 0.02 | 0.02 | 0.01 | 0.00 | 0.00 | 0.00 | 0.36 | 0.08 | 1 | | | Acceleration
Total System | Pressure Drop | | pai | 2.99E-03
0.02 | 5.79E-04
0.05 | 2.97E-03
0.01 | 5.76E-04
0.00 | 2.67E-06
0.00 | 5.75E-04
0.00 | 2.88E-03
0.36 | 6.99E-04
0.08 | | | | Segment De | wnsteam Pres. | | peig | 0.00 | 0.02 | 9.06 | 9.07 | 0.08 | 0.08 | 0.08 | 0.44 | | | | Pressure at | ar Control Valve | - Value UP | beil | 0.0000 | 0.0171 | 0.0626 | 0.0731 | 0.0765 | 0.0769 | 0.0817 | 0.4445 | 1 | | | Error Status | | | | OK | OK. | OK. | OK | OK | CK | OK | OK | 1 | Attachment 2 - Maximum Flow Hydraulic Calculations | | | | ydraulic Ca | alculations | | Ti . | | 1 | | 100 | 3311 | | 3 1376 | |----------------------|--|--|-----------------------|------------------------|--|------------------|--------------------------------------|------------------------|----------------------|----------------------|-----------------------|----------------------|----------------------| | Client | Marsifton Cit | | 100 | Basis / | State of the | | | | | 14000 | | | | | Project
Location: | Sharman Fe | 100 | | Notes -> | | , | | 5 | | 3 | 2 | 1 | ex segment | | Unit:
Proj #: | TVCS Maxim | um Flow Calcula | Aim Pres | 13.5 | alex | District NO. | Outset of KD | Company NO | 24° | Upersem | 4*
Upstram | 4"
Halfol | | | ByChk'd | | | Pres Unit | pala | fate to | - | Opper or no | Constitution | Drum | OFKO | pf KO | tanks | | | RevOate: | Unalteam S | 12-Jul-17
egment ID or kno | | GMENT ID: | 6 | H | 1 | , | K | L | M | N | | | Pressure | Downsteam | s Segment ID or | known press | psie | 13.50 | G | H | 1 | 3 | K | - | и | | | Pric Method | | essure Up or Dov | | | d | 9 | d | - 6 | d | 6 | d | 0 | | | Holdup Meth | (blankndefault, | 2 Highners, 3-L-6 | 44-868.5-Ea | ton) | | | | | | | | - | | | Pipe | | e Size or Internal | | Inches | 0.00015
4.000 | 0.00015
6.000 | 0.00015
4.000 | 6,00015
6,000 | 0.00015
24.000 | 0.00015
8.500 | 4.000 | 0.00015
4.000 | | | | Schedule (4
Straight pipe | 0, std, etc.) Blank
length | if I.D. given | above | 15.0 | 6MI
126.0 | s.td | std
5.0 | #Md
8.0 | 10 g | #Md
287,0 | 148 D | | | Elev-
ation | Straight pipe
Inlet & Outle
OR | | inlet
Outlet | | | | No. | THE REAL PROPERTY. | | | | | | | wson | Difference | | Difference | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5 | 0.0 | 0.0 | | | | 90% | Std (R/D+1), bin
Short Radius (R | | unided | | | | | | | | | | | SK Method | 90% | Standard (R/D= | 1.5), all types | 5 | | 2 | | 100 | | 1 | 1 | 3 | | | | | Mitered | | deg angle) | | | | | | | | | | | | Choose type | Plug Valve Brand | 3 weld (30
ch Flow | deg angle) | | | | | | | | | | | | Choose type | Plug Valve Straig | thru | | | | | | Cert of | | T DOM: | | | | Elbows * | 45% | Short Radius (R
Standard (R/D= | 1.5), all types | 5 | | 1 | | | | - | and the | - | | | | | Mitered, 1 weld,
Mitered, 2 weld, | 22.5 deg an | gle | | | | The second | | | | | | | | Cheose type | Ball Valve Full P | ort | | - | | | | | (ACCESS) | | | The same | | | 180's | Close Return (R | (D=1), figd/ | velded | Charles Street | BESCH | Bernett . | Direction of | | | Contract of | - | | | | 180
Used | Standard (R.D»
Standard (R.D» | 1), threaded | | The state of s | 1 | Name and Address of the Owner, where | | THE COLD | Total Control | The second second | HELE | | | | es
an | Long-radius (R/D= | | | | | | | | | CONTRACTOR OF STREET | 2 | | | Tees | Elbow | Stub-in type bra | | | | | | PER SE | COLUMN TWO | | | | District of the last | | | Plow-
thru | Threaded
Flanged or Welc | ded | | | 1 | | | | | 1 | 8 | | | | Tee | Stub-in type brain
Full line size, Be | | _ | | | - | | | | | | - | | | Gate, Ball
or Plug | Reduced tilm, 8 | lets+0.9 | - 1 | | | | | | | | | | | | Globe, stand | | | | | | | | | | | | | | Valves | Globe - (Ang
Butterfly | le or Y-type) or Di | laphragm (d | am type) | | | | | | | | Trans. | Marin Co. | | | | Lift - min vel (8 | | | | | | | | | | | | | | Check | Swing - min vel
Tilting-disk | | | | | | | | 17.00 | | | | | | Pipe Entrand | e/Exit?(0=none,1
ameter (at end) | entr., 2-ex | (3=both) | | 4.000 | 6.000 | 4.000 | 8.000 | THE REAL PROPERTY. | 8.000 | 1 | | | Other | Orifice Diam | eter | | in | | | - | - | | DEPLOY NAMED | I Charles | | | | Ob | Other Press | tram Diameter
ure Drop (Equip. | etc.) | in
pai | 0.000 | 0.034 | | 1.0 | | | | | | | | Other Head | Pressure Drop (E | Equip, etc.) | # fluid
gpm/ps/-5 | | | | | | | Secretary of the last | | | | | Miscellaneo | us Flow Resistant
e mass OR volum | nce | K factor | | | Market | The Real Property lies | Company | | ET BASES | | | | Liquid | | e mass CREVOIUM | ie casis) | gpm
pM3 | - | | | MAN PROPERTY. | No. of the last | | 100 | | 1000 | | | Density
Viscosity | | | Ib/8.3 | | | | Balance Control | Control of | | - | DESCRIPTION OF | | | | Surface Ten | sion (2 phase on | (4) | dyse/cm | 1478.51 | 1478.51 | 1478.51 | 1478.51 | 1478.51 | 1478.51 | 1478.51 | 739.25 | | | | Density on a | MCZ67 | Density | 10.43 | | 17 | | | D.C. C. Control | Maria Laboratoria | District Control | RESIDENCE. | | | Vapor | | | Z | | 29.14 | 29 14
0.994 | 29.14
0.904 | 29.14
0.994 | 29.14
0.994 | 29.14
0.994 | 29.14 | 29,14 | | | | Vapor VIsco | illy. | Temp | CP CP | 115.0
0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.510 | 115.0 | 0.010 | | | | al Diameter | | | in | 4.026 | 6.065 | 4.020 | 6.065 | 23.250 | 6.065 | 4.026 | 4.026 | | | UP / Hotou | Plow rate | NET TOTAL | | Bhr | DukHugh | DukHugh | DukHugh | DukfHugh
6 | DukHugh | DukHugh | DukiHugh | Duk/Hugh
0 | | | Liquid | Flow rate
Density | | | gpm
Ib/\$3 | 0.00 | 0.00 | 0.0 | 0.0 | 0.00 | 0.0 | 0.00 | 0.0 | | | | Misconity | des O stares | | CP | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | Flow Rate | sion (2 phase on | 70 | dyne/cm
lb/hr | 1479 | 1479 | 1479 | 1479 | 1479 | 1479 | 1479 | 739 | | | Vapor | Vapor Viscor
Segment Av | sity
orage Pressure | | c ^p
paig | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | | | | Vapor Densi | tly (Airgi) | • | 15/83 | 0.0642 | 0.0645 | 0.0847 | 0.0648 | 0.0648 | 0.0648 | 0.0663 | 0.0681 | | | | Bulk Density
Pipe Flow A | | | 15/9.3
92 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06
2.9483 | 0.06 | 0.07 | 0.07 | | | Flow | Bulk Velocity | , | | t/sec | 72.31 | 0.2006
31.74 | 71.78 | 0.2006
31.60 | 2.15 | 31.58 | 70.04 | 34.09 | | | Para- | Erosional Vi
Average Vision | locity if solids pro | esent | #/sec | 394.53 | 393.76
0.010 | 393.07
0.010 | 392.89 | 392.85 | 392.76
0.010 | 388.28
8.010 | 383.12 | | | meters | Elevation Ch | ange (Outlet-Inlet
umber (NRe) | 0 | 1 | 0.0
2.32E+05 |
0.0
1.54E+05 | 0.0
2.32E+05 | 0.0
1.54E+05 | 0.0
4.02E+04 | 0.0
1.54E+05 | 0.0
2.32E+05 | 0.0
1.16E+05 | | | meme | Friction Fact | or f (Calebrook & | White) | | 0.0183 | 0.0183 | 0.0183 | 0.0183 | 0.0222 | 0.0183 | 0.0183 | 0.0197 | | | | K (straight p
K (Strings + v | raives) | • | | 0.82 | 4.63
0.99 | 0.05 | 0.18 | 0.00 | 0.36 | 15.65 | 8.70
5.81 | | | Friction | K (entrance | + axit + swages +
eous Flow Resis | orifice) | e Cvi | 0.00 | 0.43 | 0.31 | 0.43 | 22.73 | 0.61 | 0.31
0.00 | 0.61 | | | | Total K | d (Average Densi | - Wall | | 0.82 | 6.05
15.66 | 0.52 | 0.86 | 22.82 | 1.22 | 17,78 | 15.12 | | | | Equivalent le | ingth | | f fluid | 81.26
15.0 | 167.2 | 80.07
9.5 | 15.52
23.8 | 1991.9 | 15.50 | 76.23
326.1 | 18.06
257.3 | | | | Upstream P | ressure before C
stream Control V | V
Valve DP | peig | 0.0298 | 0.1061 | 0.1249 | 0.1309 | 0.13161 | 0.14014 | 0.76747 | 0.90 | 14.3 oslg | | | Segment Up | atream pressure | | paig | 0.03 | 0.11 | 0.12 | 0.13 | 0.13 | 0.14 | 0.77 | 0.90 | | | TOTAL | Other Press | Pressure Drop
ure Drop (Equip I | & Allow) | psi
psi | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | Friction Pres
Acceleration | sure Drop | | psi | 0.03
5.37E-03 | 0.04
1.03E-03 | 0.02
5.29E-03 | 0.01
1.02E-03 | 0.00
4.74E-06 | 0.01
1.02E-03 | 0.62
5.03E-03 | 0.13
1.19E-03 | | | | | | | pai | 0.03 | 0.08 | 0.02 | 0.01 | 0.00 | 0.01 | 0.63 | 0.13 | | | | Total System | | | | | | | | | | | | | | | Total System
Segment Do
Available Do | wnsteam Pres. | | paig | 0.00 | 0.03 | 0,11 | 0.12 | 0.13 | 0.13 | 0.14 | 0.77 | | | | Total System
Segment Do
Available Do | wnsteam Pres,
wnsteam Conti
er Control Valve | | | 0.000
0.0000
CK | 0.0298
OK | 0,11
0,1061
OK | 0.12
0.1249
OK | 0.13
0.1309
OK | 0.13
0.1316
CK | 0.14
0.1401
OK | 0.77
0.7675
OK | | # Chapman Facility Tank Battery Vent Line Design & Capacity Assessment | | | The state of s | |-------|--|--| | TO: | Marathon Oil | (b) (6) | | FROM: | Tim Archuleta | | | CC: | Nate Mascarenas, Kendra Meeker | | | DATE: | June 22, 2017 | | | RE: | Chapman Facility- Vent Line Design and Capacity Assessment | | The US EPA finalized "Standards of Performance for Crude Oil and Natural Gas Facilities for which Construction, Modification or Reconstruction Commenced After September 18, 2015" on June 3, 2016. This regulation has requirements for certifying the design of closed vent systems. An assessment of the closed vent must be performed to determine it is of sufficient design and capacity to ensure that all emissions from storage vessels are routed to the control device or process and have it certified by a qualified professional engineer. This regulation is 40 CFR 40 Subpart 0000a, referred to as the Quad Oa regulation. # Certification for 40 CFR 60.5411a(d): "I certify that the closed vent system design and capacity assessment was prepared under my direction or supervision. I further certify that the closed vent system design and capacity assessment was conducted and this report was prepared pursuant to the requirements of subpart Quad Oa of 40 CFR part 60. Based on my professional knowledge and experience, and inquiry of personnel involved in the assessment, the certification submitted herein is true, accurate, and complete. I am aware that there are penalties for knowingly submitting false information." # Purpose: Evaluate the new Chapman facility tank battery vent line design to ensure that the Enardo ES-660 thief hatches, which are set at 16 oz/in² will not open during normal operating flow rate scenarios. The normal flow path for the vapor from the storage tanks will be to one flare where the off gas will be combusted to meet Quad Oa regulations. ## Results: Based on the 3D model of the vent system and predicted vapor flow rates, Halker Consulting evaluated the pipe routing from the storage tanks to the flare and calculated the expected pressure drop in the system during the Marathon Oil specified maximum predicted vapor flow rates. The pressure at the outlet of the flare was set at local atmospheric pressure of 13.5 psia. Pressure drop through the piping system from the furthest storage tank to the flare was calculated and found to have a backpressure on the tank battery of 0.57 psig (9.2 oz/in²g). During normal operating conditions the $9.2 \text{ oz/in}^2\text{g}$ pressure should be the highest pressure that the tanks will see and is 57% of the of $16 \text{ oz/in}^2\text{g}$ set pressure of the thief hatch. A flare tip pressure drop of 0.0 oz/in² was used and was based on information provided by Steffes Flare systems for the Air Assist Model 4. The flame arrestor pressure drop used was 1.3 oz/in² and is based on the Enardo sizing program for a 6" Series 8 inline flame arrestor. The total gas flow rate to the flare used was 789 mscfd (2,525 lb/hr), and is based on a condensate flash factor and gas composition provided by Marathon Oil. The gas composition used was the average composition from the February 2017 Clarks Creek (MM) Analysis Summary. Using the same calculation methodology, the total gas flow rate can be increased to approximately 1.1 mmscfd (3,680 lb/hr) and stay at or below the opening pressure of an Enardo ES-660 thief hatch (14.4 oz/in²). This is approximately 1.5 times the normal operating flow. Standard pressure drop "K" value for fittings and valves per Crane Technical Paper 410 were used. The value used for the absolute roughness of steel was 0.00015 ft. *Attached are the tabulated results of the hydraulic calculations #### Disclaimer: This assessment meets the certification requirements of 40 CFR part 60 subpart 0000a. It is the responsibility of *Marathon Oil* to comply with the reporting requirements of this regulation. # **Attachment 1- Hydraulic Calculations** | Unit:
Proj #:
By/Chl/d.
Rev/Date:
Pressure | Marathon Oil
TVCS Ventilin
Chapman Fe
16039-10 | | | Basis /
Notes> | | | | | | | | | |---|---|--|-------------------------------|------------------------|--------------------
--|--------------------|--------------------|--------------------|-------|------|--------| | Location:
Unit:
Proj #:
By/Chk'd:
Rev/Date:
Pressure | Chapman Fa | | | TWOIRES TO | | | | | | | | | | Unit:
Proj #:
By/Chl/d.
Rev/Date:
Pressure | 1000 | | | | | | | | | | | | | By/Chir'd.
Rev/Date:
Pressure | 10039-10 | | Alm Press | 13.45 | - | 6 | 36° | 6. | 6- | | | | | ReviDate:
Pressure | | TMA | Alm Pres
Pres Unit | | fare to | Outlet of KO | Drum | to KO | Half of
tanks | | | | | Pressure | | | | EGMENT ID | G | н | I I | J | K | | | | | | | 22-Jun-17
igment ID or known | | psia | | | | | | | | | | Data | | Segment ID or kno
ssure Up or Downs | | psia
12 | 13.46
d | 9 | ď | d | d | | | | | | | stank=Dukter, 3=L-M, 4 | | | - | | | | | 11000 | | - | | Holdup Meth | | *Hughmark,3*L-M,4 | *B&B,5*Eaton) |) | 0.00018 | 0.00016 | 0.00015 | 0.00015 | 0.00015 | | | | | Pipe | Pipe Rought
Nominal Line | Size or Internal Di | am eter | Inches | 0.00015
6.000 | 0.00015
8.000 | 36,000 | 6.000 | 6.000 | _ | | | | | Schedule (4) | , std, etc.) Blank if | | ve | std | std | | ald
205.5 | std
130.5 | | | | | Elev- | Straight pipe
Inlet & Outlet | length | iriet | n
n | 1.0 | 129.0 | 8.0 | 205.5 | 130.5 | | | | | ation | OR | | Outlet | ft | | | | - | | | | | | | Difference
90's | (Outlet - Infet)
Std (R/D=1), thre | Difference | T. | 0.0 | 0.0 | 0.0 | 0.0 | 00 | | - | | | | 1 | Short Redius (R/ | D=1), figd/well | ded | | 1 | | | 1 | | | | | 3K Method | 90's | Standard (R/D=1 | 5), all types
1 weld (90 d | lan social | | 2 | | 2 | 2 | | | | | | | Mitered | 2 weld (45 d | leg angle) | | | | | | | | | | | Charreton | Plug Valve Branch | 3 weld (30 d | leg angle) | | | | | | | - | | | | Choose type | Plug Valve Straigh | nt Thru | | | | | | | | | | | | 45's | Short Radius (R/ | ()=1), all types | 1 | 1- | - | | 22170707 | | | 1 | | | Elbows | 45'8 | Standard (R/D=1
Mitered, 1 weld, 4 | | | | | | 7 | | | | | | | Obs | Mitered, 2 weld, 2 | 2.5 deg angle | | | | | | | | | | | | Choose type | Ball Valve Full Por
Close Return (R/ | ()=1) Evreade | d | | | | | | | | | | | 180's | Close Return (R/ | D=1), figd/wel | | | | | | 100000 | | | | | | 180
Used | Standard (R/D=1
Standard (R/D=1 | .5), all types | | | | | | | | | | | | 85 | Long-radius (R/D | =1.5), threade | | | | | | | | | | | Tees | an
Elbow | Standard (R/D=1
Stub-in type bran | | velded | | | | | 1 | | | | | | Flow- | Threaded | | | | | | | | 71 | 1 | | | | thru | Flanged or Welde | | | | | | | 8 | | | | | | Gate, Ball or | Stub-in type bran
Full line size. Bet | a= 1.0 | _ | | 1 | | 1 | 1 | | | | | | Plug | Reduced trim, Be | | | | | | | | | | | | | Globe, stand | Reduced trim, Be | eta=0.8 | | | | 7 | 1000 | | 7 2.0 | | | | Valves | Globe - (Angle or Y-type) or Diaphragm (dam type) | | type) | | | - 10 | 100 | - | | 10000 | | | | | Butterfly | Lift - min vei (ft/s | s)= 35/(dens 8 | b/ft3)^5 | | | | Service of | | - | | | | | Check | Swing - min vel (I | | | | and the second | | | 1 | | | | | | Dina Entranc | Tilting-disk
e/Exit?(0=none,1= | entr. Spent 3: | shoth) | | | | 2 | 1 | | | - | | | Swage to Dia | meter (at end) | | in | | 4.026 | | | | | | | | Other | Orifice Diam | ter
from Diameter | | in
in | | | | | | | | | | - | Other Press | ire Drop (Equip, etc | c.) | psi | 0.000 | 0.083 | | | | | | | | | | Pressure Drop (Eq.
n-fashing Equid on | | ft fluid | | | | | | | | - | | | Mscelaneou | s Flow Resistance | 917 | gpm/psi*.5
K factor | | | | | | | | | | 0.74 | Flow (provide | mass OR volume | basis) | lb/hr | | | | | | | | | | Liquid | Density | | | gom
lb/ft3 | | | | | | | | | | | Viscosity | | | cP | | | | | | | | - | | | Flow Rate | ion (2 phase only) | | dyne/cm
lb/hr | 2525.00 | 2525,00 | 2525.00 | 2525.00 | 2525.00 | | | | | | Flow Rate
Density OR N | W. Z&T | Density | lb/ft3 | | | | | | | | | | Vapor | | | MW
Z | | 29.14
0.994 | 29.14
0.994 | 29.14 | 29.14
0.994 | 29 14
0 994 | | | | | | Maria Santa | | Temp | CP CP | 115.0 | 115.0 | 115.0 | 115.0 | 115.0 | | | | | Pipe Internal | Vapor Viscos | ity | | cP
in | 0.010
6.065 | 6.065 | 0.010
36.000 | 6.065 | 6.065 | | | | | | Calculation M | ethods | | - " | Duk/Hugh | DukHugh | Duk/Hugh | Duk/Hugh | Duk/Hugh | | | | | | Flow rate | | | Ibhr | | 0 | 0 | 0.0 | 000 | | | | | Liquid | Flow rate
Density | | , | gpm
lb/ft3 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | 1 | | | Viscosity | low PR eb | | ¢P | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | | | Flow Rate | ion (2 phase only) | | dyne/cm
lb/hr | 2525 | 0.00
2525 | 0.00
2525 | 0.00
2525 | 0.00
2525 | | | | | Vapor | Vapor Viscos | | | cP | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | | | | | | | rage Pressure | | psig | 0.00 | 0.10 | 0.21 | 0.30 | 0.48 | | | | | | Vapor Density
Bulk Density | | | Ib/ft3 | 0.0640 | 0.0845 | 0.0650 | 0.0684 | 0.0662 | | | | | | Pipe Flow An | | | ft2 | 0.2006 | 0.2006 | 7.0686 | 0.2006 | 0.2006 | | | | | Flow | Bulk Velocity | | | ft/sec | 54.65 | 54.23 | 1.53 | 53.48 | 52.78 | | | | | Para- | Average Viso | ocity if solids prese | ent | ft/sec
cP | 395.37
0.010 | 393.86 | 392 36 | 391.11
0.010 | 388.55 | | | | | | Elevation Cha | nge (Outlet-Inlet) | | ft | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | meters | Reynolds Nu
Friction Fact | mber (NRe)
or f (Colebrook & V | Athites | | 2.57E+05
0.0172 | 2.57E+05
0.0172 | 4.34E+04
0.0217 | 2.57E+05
0.0172 | 2.57E+05
0.0172 | | | | | | K (straight pi | pe) | | | 0.03 | 4.39 | 0.06 | 7.00 | 4.44 | | | | | | K (fittings + v | ext + swages + c | orifice) | | 0.00 | 1.02 | 0.00 | 1.01 | 4.45
0.61 | | | | | Friction | K (Miscellane | ous Flow Resistar | | v)· | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | | | Total K | (Average Density | Basis) | ft fluid | 0.03 | 45.70 | 0.06 | 8.65 | 9.50 | | | - | | | Equivalent le | | masis/ | It liuid | 1.0 | 177.8 | 8.0 | 254.0 | 279.0 | | | | | | | essure before CV | | psig | | 0.2075 | 0.20751 | 0.38260 | 0.57234 | <= | 9.16 | oz.in2 | | | Available Up | tream Control Valv | re DP | psi | 1 | | | | | | | | | TOTAL | Static Head | stream pressure
Pressure Drop | | psig | 0.00 | 0.21 | 0.21 | 0.38 | 0.57 | | | | | | Other Press | ire Drop (Equip & i | Allow) | psi | 0.00 | 0.08 | 0.00 | 0.00 | 0.00 | | | | | | Friction Pres
Acceleration | | | psi | | 0.12
3.02E-03 | 0.00
2.39E-06 | 0.17
2.93E-03 | 0.19
2.86E-03 | | | | | | A CHARLES BOOK IN | a service . | | | S 000C-003 | STATE OF THE | E 200 UK | | | | | | | | Total System | Pressure Drop | | psi | 0.00 | 0.21 | 0.00 | 0.18 | 0.19 | | 1 | | | | Total System
Segment Do | Pressure Drop
wnstream Pres , b
wnstream Control (| efore C.V. | psig
psig | 0.00 | 0.21 | 0.00 | 0.18 | 0.19 | | | | # STARK FACILITY TANK BATTERY VENT LINE DESIGN AND CAPACITY ASSESSMENT | | | ACTIVITY OF THE PARTY PA | |-------|--
--| | TO: | Marathon Oil | (b) (6) | | FROM: | Tim Archuleta | X | | CC: | Kendra Meeker, Nate Mascarenas | | | DATE: | September 12, 2017 | | | RE: | Stark Facility- Vent Line Design and Capacity Assessment | | The US EPA finalized "Standards of Performance for Crude Oil and Natural Gas Facilities for which Construction, Modification or Reconstruction Commenced After September 18, 2015" on June 3, 2016. This regulation has requirements for certifying the design of closed vent systems. An assessment of the closed vent must be performed to determine it is of sufficient design and capacity to ensure that all emissions from storage vessels are routed to the control device or process and have it certified by a qualified professional engineer. This regulation is 40 CFR 40 Subpart 0000a, referred to as the Quad 0a regulation. # Certification for 40 CFR 60.5411a(d): "I certify that the closed vent system design and capacity assessment was prepared under my direction or supervision. I further certify that the closed vent system design and capacity assessment was conducted and this report was prepared pursuant to the requirements of subpart Quad Oa of 40 CFR part 60. Based on my professional knowledge and experience, and inquiry of personnel involved in the assessment, the certification submitted herein is true, accurate, and complete. I am aware that there are penalties for knowingly submitting false information." ## Purpose: Evaluate the new Stark facility tank battery vent line design to ensure that the thief hatches, which are set at 16 oz/in² will not open during normal operating flow rate scenarios. The normal flow path for the vapor from the storage tanks will be to one flare where the off gas will be combusted to meet Quad Oa regulations. ## Results: Based on the 3D model (dated 7.20.2017) of the vent system and predicted vapor flow rates, Halker Consulting evaluated the pipe routing from the storage tanks to the flare and calculated the expected pressure drop in the system during the Marathon Oil specified maximum predicted vapor flow rates. The pressure at the outlet of the flare was set at local atmospheric pressure of approximately 13.46 psia. Pressure drop through the piping system from the furthest storage tank to the flare was calculated and found to have a backpressure on the tank battery of 0.4 psig (6.5 oz/in²g). During normal operating conditions the 6.5 oz/in²g pressure should be the highest pressure that the tanks will see and is 40% of the of 16 oz/in²g set pressure of the thief hatch. A flare tip pressure drop of 0.0 oz/in² was used and was based on information provided by Steffes Flare systems for the Air Assist Model 4. The flame arrestor pressure drop used was 0.8 oz/in² and is based on the Enardo sizing program for a 4" Scries 8 inline flame arrestor. The total gas flow rate to the flare used was 265 Mscfd (848 lb/hr), and is based on a condensate flash factor and gas composition provided by Marathon Oil. The gas composition used was the average composition from the February 2017 Clarks Creek (MM) Analysis Summary. Credit was taken for the VRT thereby reducing the amount of flashed gas that was calculated using the provided flash gas factor. Using the same calculation methodology, the total gas flow rate can be increased to approximately 405 Mscfd (1,296 lb/hr) and stay at or below the opening pressure of an Enardo ES-660 thief hatch (14.4 oz/in²). This is approximately 1.5 times the normal operating flow. Standard pressure drop "K" value for fittings and valves per Crane Technical Paper 410 were used. The value used for the absolute roughness of steel was 0.00015 ft. *Attached are the tabulated results of the hydraulic calculations #### Disclaimer: This assessment meets the certification requirements of 40 CFR part 60 subpart 0000a. It is the responsibility of *Marathon Oil* to comply with the reporting requirements of this regulation. # **Attachment 1- Normal Flow Hydraulic Calculations** | | | | Hydraulic C | alculations | | | | | | | | | |---------------------|--|---------------------------------------|-----------------|--
---|----------------------------------|-----------------------|--|-----------------------|----------------------------------|----------------------------------|--| | Client:
Project: | Meration O | | | Basis /
Notes -> | , | | | 1 | | - | | | | ocation: | | | | mar - | | | | | 3 | 2 | | ww sagme | | Proj # | Normal Flov | VI BOB | Ann Pres | 13.46 | alon . | Abor | Outlet. | KO | Before | La low | Halfof | | | ByChkid | | DJF | Pres Uni | | Bare Sp | KO | efixo | | KO Drum | to KO | tente | | | tevDate: | Upsteam S | 12-Sep-17
egment (0 or kn | own press. | EGMENT ID | 0 | н | 1 | 1 | K | L | м | | | ressure | | n Segment ID or
essure Up or Do | | | | 9 | ь | No. of Concession, Name of Street, or other Persons, ot | 3 | | 100 | | | ric Method | (wetening Zori | Name Out or Del-Mile | e-Begg-B-K Sens | ethermal) | 4 | - | 9 | d | 0 | and the same | 4 | | | kkdup Meth | (blank-defaut)
Pipe Rough | 2 Hughmerk 3-L- | M.4-868.5-Ea | (on) | 0.00015 | 0.00013 | 6.00015 | 0.00015 | ***** | ***** | | | | Pipe | Nominal Line Size or Internal Diameter Inches | | | 4 000 | 4.000 | 8.000 | 24.000 | 8,000 | 0.00016
4.000 | 0.00021
4.000 | | | | | Schedule (40, std. etc.) Blank if I D. given above
Straight pipe length | | | above A | 20.0 | 142.0 | 6.0 | 8.0 | 14.0 | 201.5 | 168.5 | 552 h to | | Bev- | OR OUSe | t | Inlet
Outet | - | | | | | | | | 200 11 10 | | | Difference
90's | (Outet-inlet) | Difference | 2 | 0.0 | 0.0 | 6.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | Sid (R/D=1), the
Short Radius (| R/D+1) fordly | welded | | - | | | | - | | | | K Method | 90's | Standard (R/D | 1.5), all types | dan anda) | | 3 | | | 100 | FOLK CO. | 2 | | | | | Miered | 2 weld (45 | deg angle) | | | | | | | 100 | | | | Choose type | Plug Valve Bran | nch Flow | deg angle) | | | - | | | | | | | | Choose type | Plug Valve Stra
Short Radius (| ght Thru | | | | | | | Real Property lies | 100 | | | Dows | 45'1 | Standard (R/D) | 1.5), all type: | 1 | | | | | | | | | | | | Mitered, 1 weld
Mitered, 2 weld | 1. 22 5 deg an | igle | | | | | | Edward III | | E CONTRACTOR OF THE PERSON | | | Choose type Ball Valve Full Port Close Return (R:O=1), threaded | | | | Whether to | - | | DE COLUMN | | | | 10000 | | | 180's | Close Return (| R/D=1), \$96% | welded | | 1 | - | DESCRIPTION OF | 1000 | Berlin House | - | | | | 180
Used | Standard (R.D.
Standard (R.D. | *1), fireaded | | Carrier Control | | | The same of | | | THE RESERVE | - | | | 85 | Long-radius (R
Standard (R/D) | UD=1.5), three | aded | COMPANIE DE | | De Local | | ALC: N | | - | | | Tees | Ebow | Stub-in type bri | ench | n menusu | | | Landson. | 1 | | | - | | | | Flow-
thru | Threaded
Flanged or We | ided | | | | | | | | 10 | | | | Tee | Stub-in type bro
Full line size, 8 | anch | _ | | 100 | | | | The same of | | | | | Gate, Ball
or Plug | Reduced tim. | Beta=0.9 | | | | | | | | 1 | - | | | Globe, stan | | | | | | | Total Control | | | | | | Alves | Globe - (Angle or Y-type) or Diaphragm (dam type) Butterty | | | | BOOK TO SE | The Control | | | 200 | | | | | | Lift - min vel (t/s)= 35-(dens (b/85)*.5 | | | Contract of the th | | | | | | | | | | | Check | Tilling-disk
ce/Exit?(0=none | (#s)= 40/(de | ens (0/83)*.5 | | | | | | | 1 | Contract of the th | | Other
OP | Pipe Entran | ce/Exit?(0=none,
ameter (at end) | frent, 2res | | | | 4,000 | | 2 | 6 DO0 | 1 | | | | Orifice Diameter | | | | 1000 | 4,000 | | | 8 000 | | | | | | Initial Swage than Diameter In Other Pressure Drop (Equip, etc.) | | | | 0.050 | | - | | | | 1000 | | | | Other Head Pressure Drop (Equip, etc.) | | | A STATE OF THE PARTY PAR | | - | | | | | Bong dP
Prough 4-a | | | | Macellaneo | us Flow Resista
le mass OR volu | ince | gon/ps/ 5
K factor | | | | ENGINEE S | | Lanca L | | Series 8 | | Liquid | | e mass OR volu | me basis)
| lb/hr
gomi | | | | | District to | | | | | | Density But3 | | | | | | | | | Title Tolling | Life or | | | | | sion (2 phase or | nly) | dyne/cm
lb/hr | 848 | | | | | Name of Street | | | | | Density OR | W.Z&T | Density | 16-163 | THE RESERVE TO SERVE THE PARTY OF | 845 | 848 | 848 | 848 | 848 | 424 | | | Vapor | Z | | | 29.14
0.994 | 0,994 | 29,14 | 29.14
0.994 | 29.14
0.994 | 29.14 | 29.14 | | | | | Vapor Visco | alle. | Temp | cP | 115.0 | 115.0 | 115.0 | 115.0 | 115.0 | 29,14
0.994
115.0
0.010 | 29,14
0.994
115.0
0.010 | | | Pipe Intern | al Diameter | | | in in | 4 026 | 0.994
115.0
0.010
4.026 | 6.065 | 23.250 | 6.065 | 4.026 | 4.026 | | | IP / Holdu | Plowrate | Methods | | Ibhr | DukHugh | | Liquid | Flow rate
Density | | | 89 m
Ro/83 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | Lindon | Viscosity | | | CP CP | 0.00 | 0.00 | 9.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | Surface Tension (2 phase only) dyne/cm Flow Rate Byhr | | | | 848 | 848 | 0.00
848 | 848 | 0.00
848 | 0.00
848 | 0:00
424 | - | | Vapor | Vapor Visco | | | ¢P. | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | | | | Segment Average Pressure psig
Vapor Density (Avg) but3 | | | | 0.01 | 0.09 | 0.17 | 0.18 | 0.18 | 0.0652 | 0.0658 | | | | Bulk Density (Avg.) 16/83 | | | | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.07 | 0.07 | | | Flow | Pipe Flow A
Bulk Velocit | y | • | R2
thec | 41.63 | 0.0884
41.37 | 0.2006 | 2 9483
1.23 | 0.2006 | 0.0884 | 0.0884
20.26 | | | Para- | Erosional V | elocity if solids p | resent | * baec | 395.27 | 394.02 | 392.85 | 392.82 | 392.79 | 391.56 | 389.97 | | | | | range (Outlet-In) | etj | cP
B | 0.010 | 0.010 | 0.010 | 0010 | 0.010 | 0.010 | 0.010 | | | meters | | lumber (NRe)
tar f (Calebrook | & White) | - | 1 30E+05
0.0194 | 1.30E+05
0.0194 | 8.64E+04 | 2.25E+04
0.0253 | 8.64E+04
0.0199 | 1.30E+05
0.0194 | 6.51E+04 | | | | K (straight)
K (fittings * | ripe) | • | | 1.16 | 8.23 | 0,0199 | 0.10 | 0.55 | 11.67 | 12.38 | | | Friction | K (entrance | * exit * swages | + aritce) | | 0.00 | 0.82 | 1.04 | 0.00 | 1.02 | 0.31 | 0.61 | | | | K (Mecellaneous Flow Resistance + Valve Cv)
Total K | | | | 1.16 | 9.05 | 1.68 | 0.00 | 1.97 | 14.21 | 19.31 | | | | | ength | nity Basis) | Ahid | 26 94
20.0 | 26.60
156.2 | 5.10 | 0.02 | 5.10 | 25.94 | 6.38 | | | | Upstream F | ressure before | | psig | 0.0159 | 0.1719 | 42.6
0.17676 | 0.17576 | 0.18028 | 0.34782 | 0.40380 | 6.5 019 | | TOTAL | Segment U | psteam Contol
psteam pressu | re | paig | | 0.17 | 0.18 | 0.18 | 0.16 | 0.38 | 0.40 | | | | Static Head Pressure Drop psi | | | | 0.00 | 0.00 | 0.00 | 0 00 | 0.00 | 0.00 | 0.00 | | | | Priction Pre | ssure Drop | 21200) | p4 | 0.01 | 0.11 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | Acceleration
Total System | m Pressure Drop | , | pa | 1.78E-03 | 1.76E-03
0.16 | 3.37E-04
0.00 | 1.56E-06
0.00 | 3.37E-04
0.00 | 1.71E-03
0.17 | 4.21E-04
0.06 | | | | Segment D | ownstream Pres | before C.V. | paig | 0.00 | 0.01 | 0.17 | 0.15 | 0.18 | 0.18 | 0.35 | | | | | THE PERSON NAMED IN | THE RESERVE | | | | | | | | | 1 | | | Pressure a
Error Status | fter Control Valve | | pelg | 0,0000
OK
0,042 | 0.0139
CK | 0,1719
OK
0,018 | 0.1758
OK
0.001 | 0.1758
CK
0.018 | 0.1803
CK
0.542 | 0.3475
OK
0.021 | | 10 Attachment 2- Maximum Flow Hydraulic Calculations | | | - | lydraulic Ca | alculations | | 100000 | | 7 | | John S. | 700 | | |----------------------------|---|--|---------------------------|--|------------------|--------------------------------------|------------------------------------|--|--------------------
--|----------------------------------|------------| | Client: | Marethon Di | | The state of | Basis / | | | | | | | | | | Project.
Location: | | | | Notes -> | 7 | | .5 | 4 | 3 | 1 | 1 | <= segmen | | Unit:
Proj#. | Max Flourate | | Alm Pres | 13.46 | * | 4" | 5 | - | | 1.5 | | | | ByChkid | | DF | Pres Unit | | lare to | KO | Dutet
of KO | KO | Seture
600 Drum | to KO | Half of | | | RevOate: | A | 12-Sep-17 | 56 | GMENT ID | G | н | | 1 | K | L | M | | | Pressure | Downstear | egment ID or kno
a Segment ID or | known press | pale | 13,46 | - | h | A CONTRACTOR OF THE PARTY TH | - | The second second | | | | Data | Is known pr | essure Up or Do | wnsteam (U | or Di? | d | d | 0 | 1 6 | d | | 4 | | | risc Method
rescup Neth | (bianicwiefault | residua in 34, 46, 4
2 ohtgivert 34, 4 | M.4-848.5-Est | (phi | | | | | | | | | | | Pipe Rough | ness | • | A STATE OF THE PARTY PAR | 0.00015 | 0.00015 | 0.00015 | 0.00015 | 0.00015 | 0.00015 | 6.00021 | | | Pipe | Schedule (4 | e Size or Internal
0, std, etc.) Blank | | Inches
show | 4.000 | 4.000
std | 000.3
bis | 24.800
#M | 6.000 | 4.000 | 4 0 00 | | | Dor | Straight pipe
Inlet & Outle | elength | Dolat | | 20.0 | 142.0 | 6.0 | 8.0 | 14.0 | 201.5 | 188.5 | 552 8 lutu | | ation | OR | | Outet | | | TO SECOND | | | | | | | | | Oxference
90's | (Outset - Inlet)
Std (R.O=1), thr | Difference | | 0.0 | 0.0 | 9.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | SK Method | 90's | Short Radius (F | R/D=1), figd/w | | | | | | No. of Lot | | | | | an megrag | 20.5 | Standard (R/D- | | deg angle) | | | | | Section 1 | | 2 | | | | | Misred | | deg angle)
deg angle) | | 100 | | - | - | | | | | | Choose hpe | Plug Value Bran
Plug Value Strail
Short Radius (F
Standard (R.O- | ch Flow | deg angle) | | | | | | | | | | | Choose type | Short Radius (F | gMThru
R/D=1), all two | and a | | | | | | | | | | Elbows | 45% | Standard (R/D- | 1.5), all types | 1 | | | | | | 6.254000 | | | | | | Mitered, 1 weld
Mitered, 2 weld
Ball Value Full P | | | | - | The same of | | 2220 | | | | | | Choose type | Ball Value Full P
Close Return (I | R/Dath Bush | ded | | | E SHOULD BE SHOULD BE | Contract of the last | | ET SO SON | | The same | | | 180's | Close Return (I | R/D=1), figd/w | velded | LEIE THE | - | District Co. | | - | 1000 | | | | | 180
Used | Standard (R/D=
Standard (R/D= | 1), threaded | | | Company of the last | Parameter 1 | | | | | | | | es
an | Long-radius (R.D. | (D+1.5), three | aded . | | | P.S. HOLL | DOM: NO. | Commons | | | | | Tees | Elbow | Stub-in type bra | | Meloco | | | | | | Later and the later is the later in late | 2 | | | | Flow-
thru | Threaded
Flanged or Wel | ded | | | | | | | | 18 | | | | Tee | Stub-in type bra | inch | | | | | | | | 10 | | | | Gate, Ball
or Plug | Full line size, B
Reduced trim, I | | | - | | | | | | | 10000 | | | Globe, stan | Reduced trim, | Beta=0 8 | | | | | | | | | | | Valves | Globe - (Ang | ple or Y-type) or D | iaphragm (d | am type) | | | | | | | | | | | Butterfy | Lift - min vel (f | is in Stillane | BATILE Y | | | | | | | | | | | Check | Swing - min vel | (fru)+ 40fde | nn (b.#3)* 57 | | | | The same | | | 1 | | | | Pipe Entran | Biting-disk
ce-Eat?/D*none, | teenb 2-ex | (L3-both) | | | | | , | | - | 1 | | Other | Swage to Di | ameter (at end) | | in in | | | 4.000 | | | 6.000 | | | | DP | Initial Swap | tism Diameter | | in | | | | | | | | - | | | Other Pressure Drop (Equip, etc.) Other Head Pressure Drop (Equip, etc.) I fluid | | | | | 0.113 | | | | | | 1.81 owger | | | Valve Cv (No | on-Bashing liquid | only") | gom/per1.5 | | | | | | | - | Serves 8 | | | Flow (provid | us Flow Resista
e mass OR volun | nce
ne basis) | K factor | | | | | | | | Daniel I | | Liquid | Density | | | 90·m | | | | | | | | | | | Viscosity | | | CP CP | | | | | | | | | | | Surface Ten
Flow Rate | sion (2 phase or | riyi | dyne/cm
Ib.fv | 1,296 | 1,298 | 1,296 | 1,296 | 7.000 | 1 800 | 2/2 | | | harr | Density OR | W.ZAT | Density | 8.93 | | Name and Address of the Owner, where | THE RESERVE OF THE PERSON NAMED IN | No. of Concession, Name of Street, or other Designation, Name of Street, or other Designation, Name of Street, | 1,296 | 1,298 | 648 | | | Vapor | | | Z Z | | 29.14
0.994 | 29,14
0.994 | 29,14
0.994 | 0.994 | 0.994 | 29.14
0.994
115.0
0.010 | 29.14
0.994
115.0
0.010 | | | | Vapor Visco | | Temp | ep ep | 115,0 | 0.010 | 115.0 | 115.0 | 115.D | 115.0 | 115.0 | | | Pipe Intern | al Diameter | | | in | 4 026 | 4.026 | 0.010
6.065 | 23 250 | 6.065 | 4,026 | 4.026 | | | DP / Holdu | Plow rate | Methods | | B.hr | DukHugh | | | Flowrate | | | gpm | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | Liquid | Density | | | 6/10
cP | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | | sion (2 phase or | n/y) | dyne/cm | 0.00 | 0.00 | 0.00 | 0.00
1296 | 0.00 | 0.00 | 0.00 | | | Vapor | Vapor Visco | sity | | Ib.hr
cP | 1296 | 1296 | 1296 | 0.010 | 1296 | 1296 | 0.010 | | | | | erage Pressure | | palg | 0.02 | 0.21 | 0.39 | 0.39 | 0.40 | 0.59 | 0.83 | | | | Wapor Dens
Bulk Densit | | - | 16/83
16/83 | 0.0640 | 0.0650 | 0.0658 | 0.0656 | 0.0659 | 0.0668 | 0 0679 | - | | | Pipe Flow A | rea | | 12 | 0.0884 | 0.0884 | 0.2006 | 2.9483 | 0 2006 | 0.07 | 0.07 | | | Flow | Bulk Velocit | y
elocity if solids pr | as ant | R/sec | 63.59
395.15 | 62.69
392.36 | 27.27
389.79 | 1.85 | 27 25
389 86 | 61.00 | 29.98 | | | Para- | Average Vis | cosity | • | Manc | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 387.03
0.010 | 0.010 | | | meters | | ange (Outlet-Inle
umber (NRe) | 10 | | 1.99E+05 | 1.99E+05 | 1.32E+05 | 3.45E+04 | 1.32E+05 | 0.0
1.99E+05 | 9.95E+04 | | | | | or I (Celebrook | & White) | | 0.0186 | 0.0186 | 0.0187 | 0.0230 | 0.0187 | 0.0186 | 0.0208 | | | | K (fittings + | values) | • | | 0.00 | 7.85
0.81 | 0.22 | 0.09 | 0.52 | 2.23 | 6.28 | | | Friction | | e elt - swages
leous Flow Resi | | e Cvi | 0.00 | 0.00 | 1.04 | 0.00 | 1.01 | 0.31 | 0.61 | | | | Total K | • | | | 1.11 | 867 | 1.66 | 0.00 | 193 | 13.68 | 18.60 | | | | Equivalent | id (Average Dens
engti | | R Build | 62.84
20.0 | 61 08
156.7 | 11.55
44.8 | 8.0 | 11.54 | 57.83 | 13.96 | | | | Upstream P | ressure before (| | prig | 0.0310 | 0.5842 | 0.39293 | 0.59294 | 0.40312 | 0.77117 | 0.89380 | 14.3 os | | | Segment U | psteam Control of the second o | | paig | 0.03 | 0.38 | 0.39 | 0.39 | 0.40 | 0.77 | 0.89 | | | TOTAL | Other France | Pressure Drop
ure Drop (Equip | & Allow) | P1 | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | Friction Pres | saure Drop | 2.1441 | Phi | 0.03 | 0.24 | 0.01 | 0.00 | 0.01 | 0.37 | 0.12 | | | | Acceleration
Total System | n Pressure Drop | | 1 04 | 4.15E-03
0.03 | 4.03E-03
0.35 | 7.63E-04
0.01 | 3.53E-06 | 7.62E-04
0.01 | 3 82E-03
0 37 | 9.22E-04
0.12 | | | | Segment D | ownsteam Pres | before C.V. | paig | 0.00 | 0.03 | 0.38 | 0.39 | 0.39 | 0.40 | 0.77 | | | | | her Control Valve | | paig | | 0.0310 | 0.3842 | 0.3929 | 0.3929 | 0.4031 | 0.7712 | | | | Error Status
Mach numb | | | | 0K
0.054 | 0 0 0 6 4 | OK
0.028 | 0K
6 002 | 0 028 | 0 0 0 0 3 | | | Stohler 41 CTB ### STOHLER 41 CTB VENT LINE DESIGN AND CAPACITY ASSESSMENT | | | The state of s | |-------|---
--| | TO: | Marathon Oil | (b) (6) | | FROM: | Tim Archuleta | | | CC: | Nate Mascarenas, Kendra Meeker | | | DATE: | August 30, 2017 | | | RE: | Stohler 41 CTB - Vent Line Design and Capacity Assessment | | The US EPA finalized "Standards of Performance for Crude Oil and Natural Gas Facilities for which Construction, Modification or Reconstruction Commenced After September 18, 2015" on June 3, 2016. This regulation has requirements for certifying the design of closed vent systems. An assessment of the closed vent must be performed to determine it is of sufficient design and capacity to ensure that all emissions from storage vessels are routed to the control device or process and have it certified by a qualified professional engineer. This regulation is 40 CFR 40 Subpart 0000a, referred to as the Quad Oa regulation. ### Certification for 40 CFR 60.5411a(d): "I certify that the closed vent system design and capacity assessment was prepared under my direction or supervision. I further certify that the closed vent system design and capacity assessment was conducted and this report was prepared pursuant to the requirements of subpart Quad Oa of 40 CFR part 60. Based on my professional knowledge and experience, and inquiry of personnel involved in the assessment, the certification submitted herein is true, accurate, and complete. I am aware that there are penalties for knowingly submitting false information." ### Purpose: Evaluate the new Stohler 41 CTB vent line design to ensure that the Enardo ES-660 thief hatches, which are set at 16 oz/in², will not open during normal operating flow rate scenarios. The normal flow path for the vapor from the storage tanks will be to one flare where the off gas will be combusted to meet Quad Oa regulations. #### Results: Based on the vent system 3D model (dated 8/16/2017) and predicted vapor flow rates, Halker Consulting evaluated the pipe routing from the storage tanks to the flare and calculated the expected pressure drop in the system during the Marathon Oil specified maximum predicted vapor flow rates. The pressure at the outlet of the flare was set at local atmospheric pressure of 13.5 psia. Pressure drop through the piping system from the furthest storage tank to the flare was calculated and found to have a backpressure on the tank battery of 0.67 psig (10.8 oz/in²g). During normal operating conditions the $10.8 \text{ oz/in}^2\text{g}$ pressure should be the highest pressure that the tanks will see and is 67% of the of $16 \text{ oz/in}^2\text{g}$ set pressure of the thief hatch. ### Calculations: A flare tip pressure drop of 0.0 oz/in² was used and was based on information provided by Steffes Flare systems for the Air Assist Model 4. The flame arrestor pressure drop used was 1.79 oz/in² and is based on the Enardo sizing program for a 6" Series 8 inline flame arrestor. The total gas flow rate to the flare used was 971 Mscfd, and is based on a condensate flash factor and gas composition provided by Marathon Oil. The gas composition used was the average composition from the February 2017 Clarks Creek (MM) Analysis Summary. Using the same calculation methodology, the total gas flow rate can be increased to approximately 1140 Mscfd and stay at or below the opening pressure of an Enardo ES-660 thief hatch (14.4 oz/in^2). This is approximately 1.17 times the normal operating flow. Standard pressure drop "K" value for fittings and valves per Crane Technical Paper 410 were used. The value used for the absolute roughness of steel was 0.00015 ft. *Attached are the tabulated results of the hydraulic calculations #### Disclaimer: This assessment meets the certification requirements of 40 CFR part 60 subpart 0000a. It is the responsibility of *Marathon Oil* to comply with the reporting requirements of this regulation. This evaluation does not consider the destructive efficiency of the controlled device or components upstream of the tank vent design. # **Attachment 1 - Normal Flow Hydraulic Calculations** | Client | Misrathon Oil | | lic Calculations Basis / | | | | | | | | | | | |--|---|---|--
--|-----------------|------------------------|--|--------------------|------------------------------------|-------------------|-----------------|-------------------------|---| | Project: | Stohler 41 C | | Notes -> | 1 | | | | | | | | | | | Location | | San Marian San San San San San San San San San S | | 1 | | | | | | | | | | | Unit
Proj #: | Normal Oper | ating Scenario | Pres 13.5 | alm | Dutiet of KO | 6" MARK 16" | ко | 6"water at | Upstream | Upstream | Half of | Half of | | | ByChkid | SCEO | | s Unit pala | flure to | WIFA | NO bldg | Drum | KO bldg | SLKO 8. | PLKO 6. | tanks yaive | Sanks | | | RevDate: | FI | 18-Aug-17 | SECMENT IO | 0 | н | - 1 | 3 | K | L | M | N | 0 | | | Pressure | | egment ID or known pre
Segment ID or known | | | G | H | - | 3 | K | L | H | No. | - | | Data | | essure Up or Downstrea | m (U or D)? | d | d | d | d | d | 4 | d | d | d | | | Fric Method
Heldup Meth | (blank=default) | turk+Dukter, 3×1, 46 , 4×8+gp 8:
2 =64ughermek, 3×1, -68, 4×8-88 | il, (machemal)
(S=Eaton) | | | | | | | | | | | | | Pipe Rough | ness | A CONTRACTOR OF THE PERSON NAMED IN | 0.00015 | 0.00015 | 0.00015 | 0.00015 | 0.00015 | 6.00015 | 0.00015 | 0.00015 | 0.00015 | | | Pipe | Schedule (4 | e Size or Internal Diame
0, std, etc.) Blank if I.D. (| | 4 000 | 8.000
bits | 6.000
skt | 24 000
ald | 6.000
std | 8 000
81d | 6,000
std | 6.000
ski | 6,000 | | | | Straight pipe
Inlet & Outle | length liniet | | 20.0 | 112.0 | The Real Property lies | # ld
4.0 | | 203.0 | 12.0 | | 115.0 | 442 ft total | | Elev-
ation | OR Cutte | Outlet | | | | | | | | | | | Total State of | | | Difference
90's | (Outlet - Inlet) Differ | ence | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | 905 | Std (R/D=1), threaded
Short Radius (R/D=1), | figd/welded | | | | | | | | | | | | 3K Method | 80.8 | Standard (R/D=1.5), al | d (90 deg angle) | | 3 | | | | | | | 200 | | | | | Mitered 2 wel | d (45 deg angle) | | | | | | | 1000 | | | 10-10 | | | Phones her | Plan Value Branch Flow | d (30 deg angle) | | | | | | | | | | | | | Choose type | Plug Valve Straight Thin
Short Radius (R/D=1), | Residence in contract | - | | 1000 | 1 | | | | | | | | Elbows | 45's
45's | Short Radius (R/D=1),
Standard (R/D=1.5), al | all types | | | | | | | | | | | | 2.000 | | Mitered, 1 weld, 45 dep | angle | Marie Control | The same of | | | THE REAL PROPERTY. | PER SE | | | | - | | | Choose type | Mitered, 2 weld, 22.5 d
Ball Valve Full Port | eg angle | | | | | | | | | | | | | | Close Return (R/D=1). | | | No. | Contract of | | | | 100000 | Contract of | | No. | | | 180's
180 | Close Return (R/D=1),
Standard (R/D=1.5), el | ngd/welded
types | | | The state of | | | | | | | | | | Used | Standard (R/D=1), three | aded | | | | | - | | | | (Contract) | - | | | 90 | Long-radius (RID+1.5)
Standard (RID+1), fan | | | | | | | 1 | | | 2 | Part of the last | | Tees | Elbow | Stub-in type branch | ., | | 1 | Despite a serie | Charles 1 | - | ALC: UNKNOWN | - | Destroit | LOCK CO. | - | | | Flow-
thru | Threaded
Flanged or Welded | | | 1 | | | | | | | | | | | Tee | Stub-in type branch | | | | 1000 | No. of Concession, Name of Street, or other party of the last t | | | | | - | 1 | | | Gate, Ball | Full line size, Bets=1.0
Reduced trim, Bets=0. | 9 | | | | | | | The second second | | | 100 | | | or Plug | Reduced trim, Beta=0. | | | | | | | | | | | | | Valves | Globe, standard
Globe - (Angle or Y-type) or Diaphragm (dam type) | | | | | | | | | | | | - | | tunus | Butterfly | | | | | | and the same of | | | | | | | | | Lift - min vel (ft/s)= 35/(dens lb/ft3)*.5 Check Swing - min vel (ft/s)= 49/(dens lb/ft3)*.5 | | | | | | | | | | | | | | | united. | Titing-disk
e/Ext?(0+none,1+entr.) | The state of s | | | | | | | | 12 12 12 12 | No. of Lot | | | |
Pipe Entrano | eÆxt?(0=none,1=entr.,
smeter (at end) | 2*ext3*both) | | 4.000 | 1 | | 2 | 6,000 | 8.000 | | | | | Other | Orifice Diam | eler | in in | | 7000 | 10000 | | | | | | District of | 1 | | OP | Other Press | tom Diameter
ure Drop (Equip, etc.) | in pal | 0.000 | 0.112 | | | | | | | | | | | Other Head | Pressure Drop (Equip, e | (c) Third | A CONTRACTOR OF THE PARTY TH | 0.110 | | | | ALC: UNKNOWN | | ALC: NO | De la constant | 1.79 onig dP
through 6-inch | | | | Ascellaneous Flow Resistance Klacker | | | | | | | | | | | Servs 8 | | | | mass OR volume basi | s) Bhr | | - | | | | 122.20 | | 10000 | | | | Liquid | Density | | gpm
Ib/fi3 | | | | | | | | | | | | | Viscosity | | cP | | | | | | | | | | | | _ | Flow Rate | sion (2 phase only) | dyne/cm
Ib/h/ | 3.107 | 3,107 | 3,107 | 3,107 | 3,107 | 3,107 | 3,107 | 1,262 | 1,262 | - | | | Density OR I | | | | | | ALC: NO. | | A RESIDENCE OF THE PERSON NAMED IN | The same | | | | | Vapor | | XXV | | 29.14
0.994 | 29.14
0.994 | 29.14
0.994 | 29.14 | 2914 | 29.14
0.994
115.0 | 29.14
0.994 | 0.994 | 29.14
0.994
115.0 | | | | | Temp | CHARLES ! | 0.994
115.0 | 115.0 | 115.0 | 0.994
115.0 | 0.994
115.0 | 115.0 | 115.0 | 0.994
115.0 | 115.0 | Description of the last | | Pipe Interna | Vapor Visicos
Il Diameter | irty | cP
in | | 6.065 | 0.010 | 23.250 | 6.065 | 7.951 | 6.065 | 6.065 | 6.065 | | | 1 10 10 10 10 10 10 10 10 10 10 10 10 10 | Calculation | Methods | | DukHugh DukiHugh | DukHugh | | | | Flow rate | | form | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | Liquid | Density | | gpm
lb/ft3 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | Viscosity
Surface Ten | sion (2 phase only) | dyne/cm | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | Flow Rate | | Rothr | 3107 | 3107 | 3107 | 3107 | 3107 | 3107 | 3107 | 1262 | 1282 | | | Vepor | Vapor Viscor
Segment Av | sity
erage Pressure | psig | 0.010 | 0.010 | 0.010 | 0.010 | 0.52 | 0.010 | 0.010 | 0.010 | 0.010 | | | | Vapor Densi | | B/83 | | 0.0658 | 0.0665 | 0.0665 | 0.0666 | 0.0669 | 0.0671 | 0.0672 | 0.0673 | | | | Bulk Density | (Aug) | 16/83 | 0.06 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | | | Flow | Pipe Flow At
Bulk Velocity | | 8/sec | 0.0884
150.99 | 0.2006
65.38 | 0.2006
64.70 | 2.9483 | 0.2006
64.57 | 0.3474
37.15 | 0.2006
64.13 | 0.2006
26.03 | 0.2006
25.98 | | | | Erosional Ve | locity if solids present | Nacc Nacc | 393.25 | 389.83 | 387.81 | 387.85 | 387.41 | 386.70 | 386.08 | 385.87 | 385.55 | | | Para- | Average Visc | | GP | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | | | meters. | Reynolds No | imber (NRe) | - | 4.77E+05 | 3.17E+05 | 3.17E+05 | 8.26E+04 | 3.17E+05 | 2.41E+05 | 3.17E+05 | 1.29E+05 | 1.296+05 | | | | Friction Fact
K (straight p | or f (Colebrook & White |) | 1.04 | 3.74 | 0.0169 | 0.0191 | 0.0169 | 0.0169
5.15 | 0.0169 | 0.0187 | 0.0187
4.26 | | | | K (Strings +) | alves) | _ | 0.27 | 0.91 | 0.14 | 0.00 | 0.14 | 1.44 | 0.17 | 1.69 | 2.88 | | | Friction | | exit + swages + orifice
eous Flow Resistance | | 0.00 | 0.43 | 0.61 | 0.00 | 0.00 | 0.00 | 0.18 | 0.00 | 0.81 | | | . Indeed | Total K | | | 1.30 | 5.08 | 0.75 | 0.04 | 1.16 | 6.60 | 0.75 | 1.69 | 7.75 | - | | | Velocity Hea
Equivalent le | d (Average Density Basi
noth | s) R fluid | | 66.43
152.1 | 85.08
22.5 | 0.30 | 64.80
34.7 | 21.45 | 63.91
22.5 | 10.53 | 10,49
209.1 | | | | Upsteam P | ressure before CV | psig | | 0.4793 | 0.50203 | 0.50204 | 0.53688 | 0.60475 | 0.62720 | 0.63550 | 0.67353 | 10 R osig | | | Segment Lin | stream Control Valve Di
stream pressure | psig
psig | | 0.48 | 0.50 | 0.50 | 0.54 | 0.60 | 0.63 | 0.64 | 0.67 | | | TOTAL | Static Head | Pressure Drop | psi | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | Other Press | ure Drop (Equip & Allow
sure Drop | psi
psi | 0.00 | 0.11 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | Acceleration | Factor | | 2 34E-02 | 4.39E-03 | 4.29E-03 | 1.99E-05 | 4.28E-03 | 1.42E-03 | 4.22E-03 | 6.95E-04 | 6.93E-04 | | | | | Pressure Drop
wnsteam Pres, before | C.V. psig | 0.21 | 0.27 | 0.02 | 0.00 | 0.50 | 0.07 | 0.02 | 0.01 | 0.04 | | | | | wnstream Control Valve | | | | 0.4793 | 0.5020 | 0.5020 | 0.5369 | 0.6048 | 0.6272 | 0.6355 | er Control Valve | peig | 6.0000
OK | 0.2125
OK | OK | OK | OK | | | OK | | | | | Pressure at
Error Status
Mach numbe | er Control Valve | polg | 0154 | | | | | 0.038
0.038 | 0.665
0.10 | | CK
0.026
0.02 | | # Attachment 2 - Maximum Flow Hydraulic Calculations | | | | ydraulic C | alculations | | | 7 | 1700 | F 13.55 | | 1 | - | | 77-4 | |-----------------------|---|--|-----------------------|--------------------------|---------------------------|------------------|-----------------------|-----------------------|-------------------------|-----------------------|-------------------------|-------------------------|-------------------------|-----------------------------| | Client | Marathon Oil | | | Basis / | | | | | | | | | | | | Project:
Location: | Stohler 41 C | TB: | | Notes → | | | | | | | | | | | | Unit: | Max Flow Squ | onano | Jan Pre | 13.5 | | a Street | | - | 4 5 14 | | Vandalin . | and a | Garage. | | | Proj #:
ByChk'd: | | DJF | Pres Un | _ | flare to | Outset of KIO | KID bidg | Drum | Street CON | Upstream
of KO 8" | Upstream
of KD 6* | Half of
backs valve | Helf of
tunks | | | RevDate | F1 5 | 18-Aug-17 | 8 | EGMENT ID | 6 | н | | J | K | L | М | N | 0 | | | Pressure | | egment ID or kno
Segment ID or i | | paia
paia | | 6 | H | | | - | | и | H | | | Data | is known pre | esure Up or Dov | insteam (| J or D)? | d | 8 | 0 | d | d | d | d | d | d | | | Fric Method | (witamag. 2 or b | lank-Dukler, S-L-M, G-
2 HHughmark, S-L-N | Segg-B-0, 5-0 | etterral) | | | 0.00 | | | | | | | | | PERGUS MESS | Pipe Rough | | (4-080,5-6) | 1 8 | 0.00015 | 0.00015 | 0.00015 | 0.00015 | 0.00015 | 0.00015 | 0.00015 | 0.00015 | 0.00015 | | | Pipe | | e Size or Internal
0, std, etc.) Blank | | Inches | 4.000
s/d | 8.000
bits | 6.000
alsi | 24,000 | 8.000
etd | e doce
std | 6.000 | 6.000 · | 8.000 | | | | Straight pipe | length | | 1 | 20.0 | 112.0 | | 4.0 | And in case of | 203.0 | 12.0 | - | 115.0 | 442 ft total | | Elev-
ation | OR Outle | | Solet | - 1 | | | | | | | | | | | | | Difference | | Difference | 1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | 90% | Std (R/D=1), three
Short Radius (R | | welded | | | | | | | | | | - | | 3K Method | 90's | Standard (R/D= | 1.5), all type | 18 | The state of the state of | 3 | - | | | | | | 2 | Charles and | | | | Mitered | 2 weld (45 | deg angle)
deg angle) | | | | | | | | 10000 | | | | | Choose head | Plug Valve Brand | th Flores | deg angle) | | | | | | | | | | | | | Choose type | Plug Valve Straig | out Thru | | | Name of the last | | | | | | National Street | | | | Elbows * | 45%
45% | Short Radius (R/D+ | (D+1), all ty | pes | | | | | | 1 | | | | | | | | Mitered, 1 weld. | 45 deg ang | le | | | - | - | the same of | Contract of | | Mark Room | | - | | | Choose type | Mitered, 2 weld,
Bull Velve Full Po | PHO | | | | No constant | | | in the latest and the | Honora Control | | | | | | 180's | Close Return (R/D=1), threaded | | | | 55500 | | 1 | - | THE OWNER OF | N. Park | | | 10000 | | | 180 | Standard (R/D= | 1.5), all type | 15 | | | | | | Table 1 | | | | | | | Used | Standard (R/D=
Long-radius (R/ | 1), Breaded | | | | | | | Children Sept | | 2000 | | | | | an | Standard (RIO= | 1), flanged | | No. | Contract of | | | | | | a Carrier | 2 | | | Tees | Flow- | Stub-in type brai
Threaded | nch | | | | | | Name and Address of | | | | | 10000 | | | Bru | Flanged or Weld | | | | 20100 | | PUSEMB | | 1 | 1 | - | STATE STATE | | | | Gate, Ball | Stub-in type brain Full line size, Be | | _ | | | | | 1 | | | 1 | | | | | or Plug | Reduced trim, 8 | eta=0.9 | | Contract of the last | | | N WHITE | Service of | | | | Colores | | | | Globe, stand | Reduced trim, 8
ard | | | | | | The second second | | | The same of | | | | | Valves | Globe - (Angle or Y-type) or Diaphragm (dam type) | | | | | | | | | | | 1710755 | | | | | Butterfly Lift - min vel (f/s)= 35/(dens lb/t3)*.5 | | | | | | | | No. | | | | | | | | Check | Swing - min vel | (f/s)= 40/(d | ens (b/83)*.5* | | | | | | | | | | | | | Pipe Entranc | Titing-disk
e/Exit?(0=none,1 | *entr., 2*e | et3=both) | | | | | 2 | | | | Desire Land | | | Other | Swage to Diam | emeter (at end) | | in | | 4.000 | | | | 8 000 | 8.000 | | | | | DP | Initial Swage | tism Diameter | | In | | | 1 | | 7 | - | Maria de la | | | | | | Other Press | ressure Drop (Equip, e
Pressure Drop (E | etc.)
iquip, etc.) | R Buid | 0.000 | 0.151 | | | | | | | | 2.42 ong dP | | | Valve Cv (No | n-fleshing liquid
as Flow Resistan | only) | gprepu? 5
K factor | | | | 1000 | | | | | | fireigh 5-trich
ferres 8 | | | | mass OR volum | | g/ps | | | | | | | | | | | | Liquid | Density | | | gpim
E/fd | | | | | | | | | | | | | Viscosity | | | OP) | | | | | Name of Street | | | | | | | | Surface Tens
Flow Rate | sion (2 phase on | M) | dyne.icm
B/hr | 3,648 | 3,648 | 3,648 | 3,648 | 5,648 | 3,548 | 3,648 | 1,262 | 1,292 | | | | Density OR N | MV.Z&T | Density | 15/83 | | | | | | The second second | | | 98.17 | | | Vapor | | Z Z | | | 29.14
0.904
115.0 | 29.14
0.994 | 29.14 | 29 14
0.994 | 0994 | 29.14
0.994 | 29.14
0.994
115.0 | 29,14 | 0.994 | | | | Vapor Vis con | | Temp | CB CB | 0.010 | 115.0
0.010 | 0.010 | 0.010 | 0.994
115.0
0.010 | 115.0
0.010 | 115.0 | 0.994
115.0
0.010 | 0.994
115.0
0.010 | | | Pipe
Interna | al Diameter | | | in | 4.026 | 6.065 | 6.065 | 23.250 | 8.065 | 7.981 | 6.065 | 6.065 | 6.065 | | | DP / Holdup | Plow rate | Methods | | l bhr | DukHugh | Duk/Hugh
0 | DukHugh | DukHugh | DukHugh | Dukfflugh | DukHugh | DukHugh | DukHugh | | | | Flow rate | | | gpm
B/R3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | Liquid | Density
Viscosity | | | P(1) | 000 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | Surface Ten | ion (2 phase on | M | dyne/cm | 0.00
3646 | 0.00
3648 | 0.00
3848 | 0.00
3648 | 0.00
3648 | 0.00
3648 | 0.00
3648 | 0.00 | 0.00
1262 | | | Vapor | Flow Rate
Vapor Viscon | | | cP CP | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | | | | | rage Pressure | | palg | | 0.47 | 0.67 | 0.68 | 0.71 | 0.78 | 0.84 | 0.86 | 0.88 | | | - | Vapor Density
Bulk Density | | | Ib/R3 | 0.0649 | 0.0664 | 0.0873 | 0.0674 | 0.0675 | 0.0679 | 0.0681 | 0.0682 | 0.0683 | | | | Pipe Flow A | ea . | | 82 | 0.0884 | 0.2008 | 0.2006 | 2.9483 | 0.2006 | 0.3474 | 0.2006 | 0.2006 | 0.2006 | | | Flow | Bulk Velocity | locity if solids pri | and the same | B/sec | 176.75
392.67 | 76.06
388.05 | 75.01
385.36 | 5 10
385 15 | 74.80
384.82 | 42.99
383.89 | 74.13
383.08 | 25.62
382.82 | 25.58
382.52 | | | Para- | Average Visc | osity | | CP. | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | | | meters | Reynolds No | inge (Outlet-Inlet
imber (NRs) | 0 | | 0.0
5.60E+05 | 0.0
3.72E+05 | 0.0
3.72E+05 | 970E+04 | 3.72E+05 | 0.0
2.83E+05 | 0.0
3.72E+05 | 1.29E+05 | 1.29E+05 | | | -messers | Friction Fact | or f (Colebrook & | White) | | 0.0172 | 0.0166 | 0.0166 | 0.0185 | 0.0166 | 0.0166 | 0.0166 | 0.0187 | 0.0187 | | | | K (straight pi
K (Strings + v | | | | 1.03 | 3,68
0.91 | 0.00 | 0.04 | 0.00 | 5.05 | 0.17 | 1.69 | 4.26
2.88 | | | Ediction | K (entrance | edt + swages + | prifice) | in DA | 0.00 | 0.43 | 0.61 | 0.00 | 1.01 | 0.21 | 0.18 | 0.00 | 0.61 | | | Friction | Total K | eous Flow Resis | | | 1.30 | 5.02 | 0.75 | 0.04 | 1.16 | 6.71 | 0.74 | 1.69 | 7.75 | | | | Velocity Hea
Equivalent le | d (Average Densi | ty Basis) | R Suid | | 89.91
152.6 | 87.44 | 0.40 | 88 98
35 2 | 28.72
269.4 | 85.39
22.6 | 10.20
45.5 | 10.17 | | | | Upstream Pr | essure before C | | psig | 25.2
0.2927 | 0.6536 | 0.88451 | 0.68452 | 0.73196 | 0.82290 | 0.85317 | 0.86133 | 0.89877 | 14.4 osig | | | | stream Control V
stream pressure | | pelg | | 0.65 | 0.68 | 0.68 | 0.73 | 0.82 | 0.85 | 0.86 | 0.90 | | | TOTAL | Static Head | Pressure Drop | | psi | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | Other Press | ure Drop (Equip I
sure Drop | Aplow) | ps ps | | 0.15 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | - | Acceleration | Factor | | | 3.20E-02 | 5.93E-03 | 5.77E-03 | 2.67E-05 | 5.74E-03 | 1.90E-03 | 5.64E-03 | 6.73E-04 | 6.71E-04 | | | | Segment Do | Pressure Drop
wnsbeam Pres | | | 0.29 | 0.36 | 0.03 | 0.00 | 0.05 | 0.09 | 0.03 | 0.01 | 0.04 | | | | Available Do | wnstream Control Valve | | | | 0.2927 | 0.6536 | 0.6845 | 0,6845 | 0.7320 | 0.8229 | 0.8532 | 0.8613 | | | | Error Status | | | | II OK | OK | 0.6536
CK
0.076 | 0.6845
OK
0.005 | 0,8045
CK
0.076 | OK
0.044 | OK
0.075 | OK
0.028 | OK
0.026 | | | | | | | M | 0.181 | 0.078 | 0.076 | 0.005 | 0.078 | COLL | 0.075 | 0.038 | · 0.000 | | | | Mach number
Homogeneou | s Friction Pres d | rop/1008 | psi/100/1 | | 0.14 | 0.13 | 0.00 | 0.13 | 0.03 | 0.13 | 0.02 | 0.02 | | ## Attachment 3 – Piping Layout TAT USA 34 Pad ## TAT 34 FACILITY TANK BATTERY VENT LINE DESIGN AND CAPACITY ASSESSMENT | | | MITTER | |-------|---|---------| | TO: | Marathon Oil | (b) (6) | | FROM: | John Van Pelt | 1/2 | | CC: | Tim Archuleta, Nate Mascarenas, Kendra Meeker | | | DATE: | June 12, 2017 | | | RE: | TAT 34 Facility- Vent Line Design and Capacity Assessment | | The US EPA finalized "Standards of Performance for Crude Oil and Natural Gas Facilities for which Construction, Modification or Reconstruction Commenced After September 18, 2015" on June 3, 2016. This regulation has requirements for certifying the design of closed vent systems. An assessment of the closed vent must be performed to determine it is of sufficient design and capacity to ensure that all emissions from storage vessels are routed to the control device or process and have it certified by a qualified professional engineer. This regulation is 40 CFR 40 Subpart 0000a, referred to as the Quad Oa regulation. ### Certification for 40 CFR 60.5411a(d): "I certify that the closed vent system design and capacity assessment was prepared under my direction or supervision. I further certify that the closed vent system design and capacity assessment was conducted and this report was prepared pursuant to the requirements of subpart Quad Oa of 40 CFR part 60. Based on my professional knowledge and experience, and inquiry of personnel involved in the assessment, the certification submitted herein is true, accurate, and complete. I am aware that there are penalties for knowingly submitting false information." ### Purpose: Evaluate the new TAT 34 facility tank battery vent line design to ensure that the Enardo ES-660 thief hatches, which are set at 16 oz/in² will not open during normal operating flow rate scenarios. The normal flow path for the vapor from the storage tanks will be to one flare where the off gas will be combusted to meet Quad Oa regulations. ### Results: Based on the 3D model of the vent system and predicted vapor flow rates, Halker Consulting evaluated the pipe routing from the storage tanks to the flare and calculated the expected pressure drop in the system during the Marathon Oil specified maximum predicted vapor flow rates. The pressure at the outlet of the flare was set at local atmospheric pressure of approximately 13.46 psia. Pressure drop through the piping system from the furthest storage tank to the flare was calculated and found to have a backpressure on the tank battery of 0.47 psig (7.5 oz/in²g). During normal operating conditions the 7.5 oz/in²g pressure should be the highest pressure that the tanks will see and is 47% of the of 16 oz/in²g set pressure of the thief hatch. ### Calculations: A flare tip pressure drop of 0.0 oz/in² was used and was based on information provided by Steffes Flare systems for the Air Assist Model 4. The flame arrestor pressure drop used was 1.1 oz/in² and is based on the Enardo sizing program for a 4" Series 8 inline flame arrestor. The total gas flow rate to the flare used was 276 mscfd (883 lb/hr), and is based on a condensate flash factor and gas composition provided by Marathon Oil. The gas composition used was the average composition from the February 2017 Clarks Creek (MM) Analysis Summary. Credit was taken for the VRT thereby reducing the amount of flashed gas that was calculated using the provided flash gas factor. Using the same calculation methodology, the total gas flow rate can be increased to 391 MSCFD (1251 lb/hr) and stay below the opening pressure of an Enardo ES-660 thief hatch (14.4 oz/in²). This is approximately 1.41 times the normal operating flow. Standard pressure drop "K" value for fittings and valves per Crane Technical Paper 410 were used. The value used for the absolute roughness of steel was 0.00015 ft. *Attached are the tabulated results of the hydraulic calculations ### Disclaimer: This assessment meets the certification requirements of 40 CFR part 60 subpart 0000a. It is the responsibility of *Marathon Oil* to comply with the reporting requirements of this regulation. This evaluation does not consider the destructive efficiency of the controlled device or components upstream of the tank vent design. # **Attachment 1- Hydraulic Calculations** | Client
Project
Location | nt Meration (N
ect. TVG8 VenSine | | | Basis /
Notes -> | , | | | | 3 | 2 | Ŷ. | ⇔ ségment | | | |-------------------------------|--|---|--------------------------------|---------------------|-----------------|------------------|------------------|----------|------------------|-------------------|------------------|----------------|--------|--------| | Unit
Proj#: | 16039-02 | | I Am Pre | 13.46 | d olm | 4"
Atlan | 8°
Ovtet | ко | 6"
Before | 4"
full flow | | | | | | By/Chk'd | | E.O. Ada | | et psia | flare to | ко | efKO | NO | KO Drum | to KO | Halfof | | | | | RevDate: | The faces | 6-Jun-17
legment ID or kno | S | EGMENT ID | | Н | | 1 | K | L | M | | | 1 | | Pressure | Downstea | m Segment ID or | known press | pais
pais | | 9 | h | 1 | - | 1 | - | | 1000 | | | Data | ta known pr | essure Up or Do | A) meeterw | or Dy? | d | d | d | d | 6 | 0 | d | | - | - | | Friic Metho | d (Hitcheg Sar
A Philippints (m. 2 | 2 Highman 31. M. A | dags bill fre | olfema) | | - | 2000 | 1000 | 10000 | | 1 | 1 | | 3 7 0 | | Outp ses | Pige Rough | ness | V-000,0-02 | To a | 0.00015 | 0.00015 | 0.00015 | 0.00015 | 0.00015 | 8,00015 | 0.00015 | | 100,00 | | | Pipe | | e Size or Internal | | Inches | 4.000 | 4.000 | 8.050 | 24.000 | 6.000 | 4.000 | 4.000 | 70000 | 3 | - | | | Straight pip | (0, std, sk:) Blank
e length | LITLD given | above | bla | 128.1 | 7.6 | 8.0 | 7.8 | 190.3 | 198.6 | 1 | 9.5 | | | Elev- | Inlet & Outin | t | Inlet | | 7 | 140.1 | 1.0 | 0.0 | 1.0 | 199.3 | 198.6 | | | | | ation | OR
Difference | (Outlet - Inlet) | Outet | | 0.0 | 0.0 | 85 | 6.0 | | | | NAME OF STREET | | | | | 90'8 | Std (R/D=1), the | esded | , | 0.0 | 0.0 | 6.0 | 0.0 | 0.0 | 0.0 | 0.0 | V-6.500 | | 1 500 | | 3K Method | 90% | Short Radius (R | UD=1), figdA | welded | | | | 1000 | The state of | 200 | 1000 | | 1 | | | In Mesiod | 10.8
 Slandard (R/D= | 1.5), all type
11 weld (90 | deg angle) | | 3 | 1 | | 1 | 2000 | 2 | | 5-70 | 5 25 | | | | Milared | 2 weld (45 | deg angle) | | | | | | - | | | - | | | | Choose No. | Plug Valve Brand | 3 weld (30 | deg angle) | | | | 1000 | 1000 | 1-2-3 | 1000 | 10000 | 1000 | | | | Choose type | Plug Valve Straig | phi Thru | | | | - | | - | - | - | 3000 | | 200 | | in. | 45's | Short Radius (R | (D=1), all by | pes | | 1 15253 | 1000 | | 1 | 1000 | | | 1 | - | | Ibows | 40.9 | Standard (FUD+
Mibred, 1 weld, | 1.5), all type:
45 den anni | S . | | | | | 1000 | - | | 1 | | - | | | Mitered, 1 weld, 45 deg angle Mitered, 2 weld, 22 5 deg angle Choose type Ball Valve Full Port | | | | | | | | | | | - | | - | | | Choose type | Close Return (R | Mat) there | dad | | 100,000 | | | | 1200 | | 12.00 | | | | | 180's | Close Return (R | (C=1), Rody | welded | | 1 | - | | 1 | | | - | - | | | _ | 180
Used | Close Return (R
Standard (R/D+
Standard (R/D+ | 1.5), all types | | | 2 0000 | 100 | | 100 | 0.51 | | | | | | | Used | Long-radius (RA | D×1.5), three | aded | | | | - | 2 | - | | | | | | | 80 | Standard (R.D+) | 1), flanged o | r welded | | 3 | 1 - 25 | | | 2 | 2 | | | 1 | | Tees | Flow- | Stub-in type bras
Threaded | nch | | | ACCUPATION | | | B-507 1 | 100.00 | 1000 | | - | | | | thru | Flanged or Weld | | | | 1 | 1000 | 1 | 100 | 3 | 11 | | - | 2 | | | Tee | Stub-in type bran | nch | | | 0.000 | The same | 13 | | 1000 | | | | - | | | Gate, Balt | Reduced trim, B | | | | | | - | - | | | | | | | | at Plug | Reduced trim, B | | | | | | | 100000 | - | - | | - | - | | laives | Globe, stand | and
le or Y-fype) or Dic | anhouse Hi | an heat | | | | | 5000 | 1.00 | 1000000 | 120,000 | 220 | | | | Butlerty | | | | | - | | - | - | | 1 | | | - | | | Check | Lit - min vel (th | | | | | - | | | - 13 | (Service) | | 2000 | | | | | Swing - min vel (
Tilting-disk | | 4 2 2 2 | - | 1 | | 1 | - | | 1 | | | | | | Pipe Entranc | a/Exit?(0=none.1 | entr., 2=0x | t3=both) | | | 1 | | 2 | | 1 | | | - | | Other | Swage to Diam | meter (at end) | | in | | 150 | 4 000 | 55 | 10000-14 | 6.000 | 1000 | DO-SAL. | | 7 | | OP. | Initial Swage from Dismeter | | | | | | | | | 5 m C 40 T | 2000 | | | 5 155 | | | Other Press | re Drop (Equip, e
Pressure Drop (E) | (k.) | psi
E fluid | 0.000 | 830.0 | | | 1000 | | | | | - | | | Valve Cv (No | n-Bashing Squid o | envo. | gmbs* 5 | | - | - | | - | 100000 | 3,000 | - | | 2 15 | | _ | Macelaneou | is Flow Resistan | CB . | K factor | | 1 | | | | | - | | - | - | | Jquid | Provigeovate | mass on volum | n basis) | lb/hr
com | | - | | | | | | | | | | | Density | | | gpm
lb/t3 | | | | | | | | | - | - | | | Viscosity
Surface Tens | ion (2 phase on) | 4 | dyne/cm | | - | 0.00 | 1 | | | CONTRACTOR | | - 55.5 | | | | Flow Rate | | 7 | Ib/hr
Ib/ft3 | 883.42 | 883.42 | 683.42 | 683.42 | 883.42 | 863.42 | 441.71 | | 1 | - | | /apor | Density OR M | Density OR MI ZaT Density | | | 1 97 6 c. | | 10000 | South we | T-10-00-01 | 100000 | 9759000 F | | | | | apor | | IXW
Z | | | 29.14
0.994 | 29.14 | 29.14 | 29.14 | 29.14 | 29.14 | 29.14
0.994 | - | | | | | | | Temp | F | 115.0 | 115.0 | 115.0 | 115.0 | 115.0 | 115.0 | 115.0 | | 1 | - | | ipe Interna | Vapor Visicos
L'Exempler | ity | | op in | 4.026 | 4.026 | 0.010 | 23.250 | 0.010 | 0.010 | 0.010 | | | 100 | | P / Holdup | Calculation N | M/hods | | | Duk/Hugh | DukHugh | DukHugh | Duk/Hugh | | 4.026
Duk/Hugh | 4.028
DukHugh | - | | - | | | Flow rate | | | lb/hr | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | + | | biupi | Flow rate
Density | | | gpm
Brit3 | 0.00 | 0.0 | 0.00 | 0.0 | 0.00 | 0.00 | 0.0 | | | | | | Miscosity | X 4 3 3 1 3 | | CP. | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | 1 | | | Surface Tens
Flow Rate | ion (2 phase only | 0 | dyne/cm
/b/hr | 883 | 883 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | | apor | Vapor Viscos | | | CP | 0.010 | 0.010 | 0.010 | 883 | 0.010 | 0.010 | 0.010 | | | | | | Segment/ve | rage Pressure | | psig | 0.00 | 0.11 | 0.22 | 0.22 | 0.22 | 0.32 | 0.44 | | | | | | Vapor Densit | | | 10/83 | 0.0640 | 0.0645 | 0.0650 | 0.0650 | 0.0650 | 0.0655 | 0.0661 | | | | | | Bulk Density
Pipe Flow Are | | | 75/83
82 | 0.06 | 0.08 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | | | | | OW | Bulk Velocity | | | fisec | 0.0884
43.39 | 43.05 | 0.2006
18.82 | 1.28 | 15.61 | 0.0584
42.39 | 0.0884 | | | | | | Erosional Vel | ocity if solids pre- | sent | f/sec | 395.38 | 393.80 | 392.21 | 392.18 | 392.15 | 390 80 | 389.08 | | | | | | Average Mack
Elevation Cha | nge (Outlet-Inlet) | 1 | cP
| 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | | | | | eters | Reynolds Nu | mber (NRe) | , , | | 1.36E+05 | 1.36E+05 | 9.00E+04 | 235E+04 | 9.00E+04 | 1.36E+05 | 0.0
6.78E+04 | 1 | | | | | Friction Factor
K (straight pip | f (Colebrook &) | White) | | 0.0193 | 0.0193 | 0.0198 | 0.0251 | 0.0198 | 0.0193 | 0.0213 | | | | | - 1 | K (Mings + ve | (and | | | 0.00 | 7.38 | 0.30 | 0.10 | 0.30 | 11.49
2.75 | 6.49 | | | | | | K (entrance + | est + swages +) | | . | 0.00 | 0.00 | 1.04 | 0.00 | 1.02 | 0.31 | 0.61 | | | 1 | | iction | K (Macellane
Total K | ous Flow Resists | mice , Althe | O. | 0.00 | 11.46 | 1.74 | 0.00 | 0.00 | 0.00 | 0.00 | | | | | | Velocity Head | (Average Density | (Basis) | ft fluid | 29.26 | 28.80 | 5.50 | 0.10 | 5.50 | 14.55 | 19.71 | | _ | - | | _ | Equivalent ler | glh | | | 0.0 | 198.8 | 44.5 | 8.0 | 40.2 | 252.4 | 310.5 | | | | | | | saure before CV | | peig | 0.0000 | 0.2162 | 0.2205 | 0.2205 | 0.22442 | 0.40954 | 0.472 | - es | 7,5 | os.in2 | | | | tream Control Val | NO UP | psi
psig | 0.00 | 0.22 | 0.22 | 0.22 | 0.22 | 0.44 | | | | | | DTAL | Static Head F | ressure Drop | . 1 | psi | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.47 | | | | | | Other Pressul
Friction Press | re Drop (Equip & | Allow) | psi | 0.00 | 0.07 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | 1 | | - 1 | Acceleration F | actor | 1 | psi | 1.93E-03 | 0.15
1.90E-03 | 0.00
3 636-04 | 1.885-06 | 0.00
3.63E-04 | 0.18
1.84E-03 | 0.08
4.53E-04 | | | 1 | | | Total System | Pressure Drop | | psi | 0.00 | 0.22 | 0.00 | 0.00 | 0.00 | 0.19 | 0.08 | | | | | | | nsteam Pres., b
nstream Contid! | | psig
psi | 0.00 | 0.00 | 0.22 | 0.22 | 0.22 | 0.22 | 0.41 | | | | | - 1 | Pressure after | Control Valve | - | paig | 0.0000 | 0.0000 | 0.2162 | 0.2205 | 0.2205 | 0.2244 | 0.4098 | | | | | | Error Status | | | | OK | OK | OK | OK. | OK | CK | CK | | | |